Loading...
Search for: organic-acids
0.013 seconds
Total 89 records

    Photocatalytic TiO2@MIL-88A (Fe)/polyacrylonitrile mixed matrix membranes: Characterization, anti-fouling properties, and performance on the removal of natural organic matter

    , Article Chemosphere ; Volume 302 , 2022 ; 00456535 (ISSN) Salehian, S ; Mehdipour, M. H ; Fotovat, F ; Mousavi, S. A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Photocatalytic membrane reactors (PMRs), coupling photocatalysts and membranes in a single system, have shown a considerable potential to reduce membrane fouling, which is one of the major drawbacks of using membranes to treat water and wastewater. In this study, the visible light-activated photocatalysts were incorporated into the polyacrylonitrile (PAN) casting solution to synthesize the photocatalytic composite membranes. The physicochemical properties and the morphology of the membranes and photocatalysts were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction analysis (XRD), ultraviolet–visible diffuse reflectance... 

    Fabrication and performance of polysulfone/H2O2-g-C3N4 mixed matrix membrane in a photocatalytic membrane reactor under visible light irradiation for removal of natural organic matter

    , Article Separation and Purification Technology ; Volume 285 , 2022 ; 13835866 (ISSN) Salehian, S ; Heydari, H ; Khansanami, M ; Vatanpour, V ; Mousavi, S. A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The coupling of photocatalysis with membrane technology, which is known as photocatalytic membrane reactors (PMRs), has received great consideration in recent years and become a promising approach with the high potential to improve the fouling of membranes. In this paper, the photocatalyst of g-C3N4 treated with H2O2 was incorporated with a polysulfone membrane to enhance the anti-fouling properties of the membrane. AFM, FE-SEM images, porosity, and contact angle analysis indicated that the membrane properties like hydrophilicity, porosity, and surface roughness were improved. Also, UV–visible DRS, PL spectra, EIS analysis confirmed that the treated g-C3N4 (H2O2-g-C3N4) had high light... 

    Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer

    , Article ACS Applied Bio Materials ; Volume 5, Issue 3 , 2022 , Pages 1305-1318 ; 25766422 (ISSN) Ramezani Farani, M ; Azarian, M ; Heydari Sheikh Hossein, H ; Abdolvahabi, Z ; Mohammadi Abgarmi, Z ; Moradi, A ; Mousavi, S. M ; Ashrafizadeh, M ; Makvandi, P ; Saeb, M. R ; Rabiee, N ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Cancer is a deadly disease that has long plagued humans and has become more prevalent in recent years. The common treatment modalities for this disease have always faced many problems and complications, and this has led to the discovery of strategies for cancer diagnosis and treatment. The use of magnetic nanoparticles in the past two decades has had a significant impact on this. One of the objectives of the present study is to introduce the special properties of these nanoparticles and how they are structured to load and transport drugs to tumors. In this study, iron oxide (Fe3O4) nanoparticles with 6 nm sizes were coated with hyperbranched polyglycerol (HPG) and folic acid (FA). The... 

    Asphaltene destabilization in the presence of an aqueous phase: The effects of salinity, ion type, and contact time

    , Article Journal of Petroleum Science and Engineering ; Volume 208 , 2022 ; 09204105 (ISSN) Mokhtari, R ; Hosseini, A ; Fatemi, M ; Andersen, S. I ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    One of the possible fluid-fluid interactions during water-flooding in oil reservoirs, that is still debated, is the effect of injected brine salinity on asphaltene destabilization. If asphaltene precipitation is induced by salinity changes in the oil reservoirs and surface facilities, this could have a massive impact on the economy of a low salinity water-flooding project. Therefore, this study aims to investigate the effect of brine salinity on the amount of asphaltene precipitation and the governing destabilization mechanisms. Direct asphaltene precipitation measurements, along with the analyses of optical microscopy images and ion chromatography (IC), indicate that the asphaltene... 

    Green products from herbal medicine wastes by subcritical water treatment

    , Article Journal of Hazardous Materials ; Volume 424 , 2022 ; 03043894 (ISSN) Jouyandeh, M ; Tavakoli, O ; Sarkhanpour, R ; Sajadi, S. M ; Zarrintaj, P ; Rabiee, N ; Akhavan, O ; Lima, E. C ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Herbal medicine wastes (HMWs) are byproducts of medicine factories, which are mainly landfilled for their environmental problems. Only bearing in mind the contamination and concerns caused by the COVID-19 pandemic and environmental emissions, the worth of herbal medicine wastes management and conversion to green products can be understood. In this work, subcritical water treatment was carried out batch-wise in a stainless tube reactor in the pressure range of 0.792–30.0 MPa, varying the temperature (127–327 °C) and time (1–60 min) of extraction. This resulted in new and green material sources, including organic acids, amino acids, and sugars. Amazingly, at very low extraction times (below 5... 

    Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer

    , Article Materials Today Bio ; Volume 16 , 2022 ; 25900064 (ISSN) Mansoori Kermani, A ; Khalighi, S ; Akbarzadeh, I ; Niavol, F. R ; Motasadizadeh, H ; Mahdieh, A ; Jahed, V ; Abdinezhad, M ; Rahbariasr, N ; Hosseini, M ; Ahmadkhani, N ; Panahi, B ; Fatahi, Y ; Mozafari, M ; Kumar, A. P ; Mostafavi, E ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Targeted drug delivery systems using nanocarriers offer a versatile platform for breast cancer treatment; however, a robust, CD44-targeted niosomal formulation has not been developed and deeply studied (both in vitro and in vivo) yet. Here, an optimized system of epirubicin (Epi)-loaded niosomal nanoparticles (Nio) coated with hyaluronic acid (HA) has been engineered for targeting breast cancer cells. The nanoformulation was first optimized (based on size, polydispersity index, and entrapment efficiency); then, we characterized the morphology, stability, and release behavior of the nanoparticles. Epirubicin release from the HA-coated system (Epi-Nio-HA) showed a 21% (acidic buffer) and 20%... 

    Direct fabrication of phosphorus-doped nickel sulfide and eco-friendly biomass-derived humic acid as efficient electrodes for energy storage applications

    , Article Sustainable Energy and Fuels ; Volume 5, Issue 19 , 2021 , Pages 4869-4881 ; 23984902 (ISSN) Hekmat, F ; Shahi, M ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Development of renewable energies is in parallel with improving high-performance energy storage devices, which can store maximum solar or wind energy and power. Herein, asymmetric energy storage systems are constructed from phosphorus-doped nickel sulfide (P-doped NiS) and biomass-derived humic acid (HA) as positive and negative electrodes, respectively. Initially, nickel sulfide (NiS) nanostructures are directly grown onto nickel foam (NF) via a hydrothermal step. P-doping into the NiS bulk is carried out through a simple hydrothermal process as well. Also, HA is activated via carbonization treatment (A-HA) for employing as the negative electrode's active material. The P-doped NiS-NF... 

    Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in-vitro investigation

    , Article Advanced Powder Technology ; Volume 31, Issue 9 , 2020 , Pages 4064-4071 Akbarzadeh, I ; Tavakkoli Yaraki, M ; Ahmadi, S ; Chiani, M ; Nourouzian, D ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, a folic acid-functionalized niosome was formulated and loaded with letrozole and curcumin as a promising drug carrier system for chemotherapy of the breast cancer cells. The formulation process was optimized by varying the type of Span 80 and total lipid to drug ratio, where Span 80 and lipid to drug molar ratio of 10 resulted in the niosomes with maximum encapsulation of both drugs but minimum size. The developed niosomal formulation showed a great storage stability up to one month with the small changes in drug encapsulation efficiency and size during the storage. In addition, they showed a pH-dependent release behaviour with slow drug release at physiological pH (7.4) while... 

    Photocatalytic filtration reactors equipped with bi-plasmonic nanocomposite/poly acrylic acid-modified polyamide membranes for industrial wastewater treatment

    , Article Separation and Purification Technology ; Volume 236 , 2020 Amoli-Diva, M ; Irani, E ; Pourghazi, K ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, two new composite membranes with antifouling and anti-biofouling properties were prepared through the modification of commercial polyamide (PA) discs using combination of in-situ polymerization of polyacrylic acid (PAA) and grafting of two synthesized bi-plasmonic Au-Ag and Ag-Au photocatalysts. The synthesis and characterization of the photocatalysts in batch mode were discussed in details as primary studies. Two intense 405-nm and 532-nm lasers for Ag-Au and Au-Ag photocatalysts, respectively and a solar-simulated xenon lamp for both photocatalysts were applied for photodegradation studies and the results were compared. In addition, the effect of other parameters such as... 

    Potential effects of alginate–pectin biocomposite on the release of folic acid and their physicochemical characteristics

    , Article Journal of Food Science and Technology ; Volume 57, Issue 9 , March , 2020 , Pages 3363-3370 Kiaei Pour, P ; Alemzadeh, I ; Vaziri, A. S ; Beiroti, A ; Sharif University of Technology
    Springer  2020
    Abstract
    Potential effects of folates on the treatment of several human diseases like cognitive function, neural tube defects, coronary heart disease and certain kinds of cancers have been discovered. However, the stability of folic acid against adverse conditions is a great concern. The present study investigates various alginate (A)–pectin (P) gastrointestinal-resistant hydrogel to immobilize folic acid. This involves evaluating different compositions of alginate–pectin to achieve higher encapsulation efficiency and stability during simulated gastric (SG) and simulated intestinal (SI) conditions. Coated alginate hydrogels with pectin resulted significant (p < 0.05) better protection of folic acid... 

    Facile design of autogenous stimuli-responsive chitosan/hyaluronic acid nanoparticles for efficient small molecules to protein delivery

    , Article Journal of Materials Chemistry B ; Volume 8, Issue 32 , 2020 , Pages 7275-7287 Sabourian, P ; Ji, J ; Lotocki, V ; Moquin, A ; Hanna, R ; Frounchi, M ; Maysinger, D ; Kakkar, A ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Easily assembled and biocompatible chitosan/hyaluronic acid nanoparticles with multiple stimuli-responsive ability are ideally suited for efficient delivery of therapeutic agents under specific endogenous triggers. We report a simple and versatile strategy to formulate oxidative stress and pH-responsive chitosan/hyaluronic acid nanocarriers with high encapsulation efficiencies of small drug molecules and nerve growth factor protein. This is achieved through invoking the dual role of a thioketal-based weak organic acid to disperse and functionalize low molecular weight chitosan in one-pot. Thioketal embedded chitosan/hyaluronic acid nanostructures respond to oxidative stress and show... 

    Enzymatically crosslinked hyaluronic acid microgels as a vehicle for sustained delivery of cationic proteins

    , Article European Polymer Journal ; Volume 115 , 2019 , Pages 234-243 ; 00143057 (ISSN) Jooybar, E ; Abdekhodaie, M. J ; Mousavi, A ; Zoetebier, B ; Dijkstra, P. J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, a novel biodegradable hyaluronic acid (HA) based microgel were prepared via enzymatic crosslinking of tyramine conjugated HA (HA-TA) in an inverse microemulsion. HA-TA microdroplets were crosslinked within a few seconds in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H 2 O 2 ). The high water content of the polymeric network and the inherent negative charge of the HA-TA microgels provided a suitable platform for encapsulation of cationic proteins like lysozyme and TGF-β1 growth factor. The results demonstrated that lysozyme was released, after an initial burst release, in a suitable sustained manner over a period of four weeks. Both diffusion and... 

    A systematic investigation on the bactericidal transient species generated by photo-sensitization of natural organic matter (NOM) during solar and photo-Fenton disinfection of surface waters

    , Article Applied Catalysis B: Environmental ; Volume 244 , 2019 , Pages 983-995 ; 09263373 (ISSN) Kohantorabi, M ; Giannakis, S ; Gholami, M. R ; Feng, L ; Pulgarin, C ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this work, the role of dissolved oxygen in the solar and the photo-Fenton-mediated E. coli inactivation process was put under scrutiny. The effect of transient species that were produced in the presence of various natural organic matter isolates (NOM), namely Suwannee River (SR) NOM, Nordic Reservoir (NR) NOM, SR Humic acid (SRHA), and SR Fulvic acid (SRFA) was studied in detail. The role of 1 O2 in this reaction was systematically evaluated by modifying the O2 concentration (N2/O2 purging) and the matrix composition (10, 50, and 100% deuterium oxide (D2O) v/v). In the presence of NOM, 1 O2 was generated and the enhancement of E. coli inactivation rate due to charge transfer from triplet... 

    New organic dyes with diphenylamine core for dye-sensitized solar cells

    , Article Journal of Materials Science: Materials in Electronics ; Volume 29, Issue 8 , April , 2018 , Pages 6323-6336 ; 09574522 (ISSN) Salimi Beni, A. R ; Karami, M ; Hosseinzadeh, B ; Ghahary, R ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    In the current investigation, four novel donoracceptor type organic dyes including (DPA-Ba, DPA-Hy, DPA-Rh, DPA-Cy), are proposed and their photophysical and electrochemical properties as well as dye-sensitized solar cell performance are systematically investigated. Among these dyes diphenylamine is utilized as an-electron donor while barbituric acid, hydantoin, rhodanine-n-acetic acid and cyano acetic acid, are proposed as anchoring groups as dye-sensitized solar cells (DSSCs). The synthesized dyes are characterized using FT-IR, NMR, mass spectrometry, absorbance and electrochemical measurements. The photophysical, electrochemical and photovoltaic properties of the solar cells based on... 

    Effects of physicochemical characteristics of magnetically recoverable biocatalysts upon fatty acid methyl esters synthesis from oils

    , Article Renewable Energy ; Volume 116 , 2018 , Pages 613-622 ; 09601481 (ISSN) Esmaeilnejad Ahranjani, P ; Kazemeini, M ; Singh, G ; Arpanaei, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This study reports the importance of physicochemical characteristics of the core-shell structured polymer-coated Fe3O4 cluster@SiO2 nanocomposite particles for designing the biocatalysts used for transesterification of soybean oil. To demonstrate this issue, two different types of polymer molecules such as polyethylenimine (PEI) and polyacrylic acid (PAA) each with two different molecular weights are employed. The highest fatty acid methyl esters (FAMEs) synthesis yield values are achieved by the lipases immobilized onto the low- and high-molecular-weight PEI-coated particles as compared to those of the low- and high-molecular-weight PAA-coated particles (i.e., ∼64.8% and ∼73.1% versus... 

    Synthesis and characterization of polyamide membrane for the separation of acetic acid from water using RO process

    , Article Membrane Water Treatment ; Volume 8, Issue 4 , 2017 , Pages 323-336 ; 20058624 (ISSN) Mirfarah, H ; Mousavi, S. A ; Mortazavi, S. S ; Sadeghi, M ; Bastani, D ; Sharif University of Technology
    Techno Press  2017
    Abstract
    The main challenge in many applications of acetic acid is acid dehydration and its recovery from wastewater streams. Therefore, the performance of polyamide thin film composite is evaluated to separate acetic acid from water. To reach this goal, the formation of polyamide layer on polysulfone support membrane was investigated via interfacial polymerization (IP) of meta-phenylenediamine (MPD) in water with trimesoyl chloride (TMC) in hexane. Also, the effect of synthesis conditions, such as concentration of monomers and curing temperature on separation of acetic acid from water were investigated by reverse osmosis process. Moreover, the separation mechanism was discussed. The solute... 

    Switchable on/off drug release from gold nanoparticles-grafted dual light- and temperature-responsive hydrogel for controlled drug delivery

    , Article Materials Science and Engineering C ; Volume 76 , 2017 , Pages 242-248 ; 09284931 (ISSN) Amoli Diva, M ; Sadighi Bonabi, R ; Pourghazi, K ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A switchable dual light- and temperature-responsive drug carrier using gold nanoparticles (Au NPs)-grafted poly(dimethylacrylamide-co-acrylamide)/poly acrylic acid [P(DMA-co-AAm)/PAAc] hydrogel was prepared by free radical polymerization procedure using N,N-methylenebisacrylamide as cross-linker and ammonium persulfate as initiator. Initial P(DMA-co-AAm) hydrogel and uniformly-distributed stable Au NPs, prepared by reduction of hydrogen tetrachloroaureate (III) hydrate in the presence of trisodium citrate, were synthesized separately. Then, the prepared P(DMA-co-AAm) and Au NPs were added to an acrylic acid solution along with the cross-linker and initiator to prepare PAAc hydrogel within... 

    Simple and rapid detection of L-dopa based on in situ formation of polylevodopa nanoparticles

    , Article Sensors and Actuators, B: Chemical ; Volume 243 , 2017 , Pages 715-720 ; 09254005 (ISSN) Hormozi Nezhad, M. R ; Moslehipour, A ; Bigdeli, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Levodopa [L-3, 4-dihydroxyphenylalanine, or L-DOPA] is an important neurotransmitter used for the treatment of neural disorders such as Parkinson's disease. Abnormal L-Dopa concentrations in biological fluids can be used for the evaluation of such diseases. In this work, a rapid and sensitive method for L-DOPA detection has been reported which is based on in situ formation of polylevodopa nanoparticles. Under alkaline conditions, L-DOPA is spontaneously oxidized to its quinone derivative and shows fluorescence properties. The fluorescence signal of the oxidation product has been monitored and used for the determination of L-DOPA in the presence of dopamine, uric acid, ascorbic acid and other... 

    Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors

    , Article Sensors and Actuators, B: Chemical ; Volume 251 , 2017 , Pages 462-471 ; 09254005 (ISSN) Mazaheri, M ; Aashuri, H ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    We present a novel hybrid electrode based on reduced graphene oxide/nickel/zinc oxide heterostructures. The sensor was fabricated by template-free hydrothermal growth of ZnO nanorod arrays on conductive glass substrates (FTO) followed by conformal electrodeposition of nickel nanoparticles with an average size of 18 nm. Then, in-situ reduction and electrophoretic deposition of graphene oxide (GO) nanosheets on the structured ZnO/Ni electrode was performed. The prepared three-dimensional nanostructure exhibited fast electrocatalytic response (<3 s) towards glucose oxidation due to the large surface area and high electro-activity. The prepared biosensor possessed a wide linear range over... 

    Mass-transfer enhancement in single drop extraction in the presence of magnetic nanoparticles and magnetic field

    , Article AIChE Journal ; Volume 62, Issue 12 , 2016 , Pages 4466-4479 ; 00011541 (ISSN) Vahedi, A ; Molaei Dehkordi, A ; Fadaei, F ; Sharif University of Technology
    John Wiley and Sons Inc  2016
    Abstract
    Magnetite nanoparticles with an average particle size of 28.8 nm were synthesized, coated with oleic acid, and characterized using various techniques such as DLS, FT-IR, SEM, XRD, VSM, and UV-Vis analysis. A nanofluid consisting of synthesized nanoparticles and 5 wt % acetic acid in toluene as the dispersed phase was prepared and used in the chemical test system, Toluene-Acetic Acid-Water, for the single drop extraction in the presence and absence of an external oscillating magnetic field. Influences of various operating and design parameters such as nanoparticle concentration, drop diameter, and the applied current and frequency on the overall mass-transfer coefficients for the...