Loading...
Search for: nanotechnology
0.009 seconds
Total 225 records

    Feasibility Study of Application of Developing New Techniques for Fuel Cell Vehicle by Focusing on Nanotechnology

    , M.Sc. Thesis Sharif University of Technology Salehi, Mohammad Bagher (Author) ; Mostafavi, Mostafa (Supervisor)
    Abstract
    Due to daily decrease of fossil energy resources, increase of environmental pollution which is included of toxic and greenhouse gases, and extensive growing rate of demands in transportation industry, especially vehicle industry, developing solutions in using fuel cells are vital for this industry in our country. Fuel cells are green, efficient and also powerful energy generators. According to potential advantages of fuel cells, structure, performance, benefits and also types of fuel cells are introduced as a desired energy resource. Indentifying existing choices of energy generators and ranking them using MCDM (Multi-Criteria Decision Making) technique was the first step to perform a... 

    The Comparative Study of Nanotechnology Research and Development in The World Selected Countries

    , M.Sc. Thesis Sharif University of Technology Yassaei, Shahla (Author) ; Ghasemi, Farhad (Supervisor)
    Abstract
    Nanotechnology requires a number of infrastructures for reaching its sustainable development. For each step of its development , various infrastructures should be studied and prepared in advance.In this direction, by introducing and recognizing the priority of Iran Nanotechnology R&D indexes ,the present research is going to propose an effective help. In this case, after studying the related literature and gathering the needed data , 27 indexes were recognized. Then , the indexes were divided in 7 criteria.In order to find the priority of the applied indexes , Fuzzy Multiple Criteria Decision Making (FMCDM) was applied. As the weighting of 7 criteria had been found by FANP , the... 

    Preparation of Membrane Humidifier using Nanotechnology to Humidify Hydrogen and Oxygen in Fuel Cells

    , M.Sc. Thesis Sharif University of Technology Samimi, Armin (Author) ; Roosta Azad, Reza (Supervisor) ; Moosavi, Abbas (Supervisor)
    Abstract
    Polysulfone (PSU) and polyethersulfone (PES) porous membranes; and mixed polymers (PSU and PES) with nanoparticles TiO2, were prepared for air humidification. The mechanical properties and morphology of these membranes were studied by Tensile Tester and SEM/EDX. The effects of membrane composition and operating factors on humidifier performance were investigated. The results revealed that the membrane composition and its structure have significant effect on humidification. The porous membranes with finger type cavities had higher humidification performance but lower mechanical properties. The Membranes which were prepared from polysulfone polymer, 10 wt % of polymers in casting solution and... 

    Transistor Based on Graphane

    , M.Sc. Thesis Sharif University of Technology Babaee Touski, Shoeib (Author) ; Khorasani, Sina (Supervisor)
    Abstract
    In the recent years, field effect transistor has been made by using graphane. But there has not been any study about bipolar transistor. Bipolar transistor can’t be constructed using graphene due to the fact that its band gap is zero. So in this thesis, in an attempt to remove this difficulty, the bipolar transistor made using graphane has been investigated and their property has been compared to those of three dimensional silicon transistors.
    At the beginning of the thesis, we will have a review of graphane diode and will consider the procedure for evaluating its current which would be the report of what has been done sofar. After that we made graphane transistor using graphane diode... 

    Investigation on Coupling of Molecular Dynamics Method and Temperature Related Cauchy Born Methods

    , M.Sc. Thesis Sharif University of Technology Farsadnia, Saeed (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Computational Nano Mechanics growth has led researchers towards the development of new multi-scale models. Accordingly, in this dissertation, a step was taken towards introduction, presentation and creation of a new concurrent multi-scale by studying the feasibility of coupling of molecular dynamics methods and temperature related Cauchy-born.To do so, firstly, the above mentioned methods have been studied and then in order to perform molecular dynamics simulations, a program written in C++ language has been used. The accuracy of the written code has been confirmed through studying intuitive phenomenon of gas perfect particle exit from cylinder with an open end. The interpretation of out put... 

    Reliability Improvement in 3D Network-on-chips Against Crosstalk Fault

    , M.Sc. Thesis Sharif University of Technology Mirosanlou, Reza (Author) ; Miremadi, Ghassem (Supervisor)
    Abstract
    Technology node scaling in recent decades ushered in gate delay cut-off and rise of interconnection latency. Hence, interconnects have become a major performance bottleneck of high performance system-on-chips (SoC) and integrated circuits (IC). In addition, interconnectiosns have become more susceptible to noises in particular crosstalk. On the other hand, the advent of multi-core processors with ever increasing number of cores has highlighted the need for fast and reliable interconnections. One of the potential solutions to alleviate the interconnection delay problem is the three dimensional integration using through-silicon vias (TSV). Vertical integration of IC dies using TSVs offers high... 

    Production and Characterization of p-n Junction TiO2-NiO Nanocomposite in Order to Improve the Photocatalytic Efficiency

    , M.Sc. Thesis Sharif University of Technology Bakhtiarnia, Siavash (Author) ; Sadrnezhaad, Khatiboleslam (Supervisor)
    Abstract
    Solar energy is one of the man's solutions to cope with problems involved in exhaustible fossil resources. In this regard, using photocatalysts is a practical and rational pproach.Nanotechnology facilitates using catalysts and photocatalysts with more productivity.TiO2 semiconductor is one of the most popular material in this field but its efficiency is low by several factors such as being inactive in visible light, recombination and the high cost of using noble metals. In this research, we tried to fix these limitations by creating a p-n junction TiO2 - NiO nanocomposite. The samples are made by three methods: impregnation, ultrasonic assisted modified impregnation with ammonium hydroxide... 

    Investigation on Effects of Nanoparticles Presence on Hydrate Formation Characterization During Drilling

    , M.Sc. Thesis Sharif University of Technology Jalilolghadr Ardabili, Raouf (Author) ; Mohammadi, Ali Asghar (Supervisor) ; Zarenezhad, Bahman (Co-Advisor) ; Ramazani, Ahmad (Co-Advisor)
    Abstract
    In past two decades, the direction of oil and gas exploration has moved towards deep water drilling. The pressure and temperature in these zones are ideal for gas hydrate formation that can cause serious and sometimes uncontrollable issues during drilling operations. Gas hydrate formation while drilling can cause problems such as occurrence of kick and blowout, plug chock and kill line, and change in rheology of drilling mud. On the other hand, nowadays, nanotechnology has created an evolution in engineering sciences and because of the wide range of this science, drilling industry is affected like other industries. In the meantime, because of high yield, high stability and various methods of... 

    Analysis and Design of Nanoantenna Arrays

    , M.Sc. Thesis Sharif University of Technology Dehmollaian, Ayyoub (Author) ; Akbari, Mahmood (Supervisor)
    Abstract
    If the size of the conventional telecommunication antennas -that are widely used in transmitting broadcasted radio and TV messages- is reduced by a nanometer size these antennas can be used at optical frequencies. Dimensions of these optical nanoantennas -that made of nanoparticles with highly permittivity- can be smaller than half of the wavelength. Based on this capability, optical nanoantennas have some important applications such as optical communication, photovoltaic devices, non-classical light, and optical sensing. After studying on optical nanoantennas and their features, in this project, we present distinctions between optical NAs and MW antennas and then investigate about different... 

    Analysis of Success Factors in Technological Cooperations in Nanotech Industry-a Multiple Case Study

    , M.Sc. Thesis Sharif University of Technology Malekifar, Mehdi (Author) ; Sheikhzadeh, Mehdi (Supervisor)
    Abstract
    Innovative small tech companies are required to often have cooperation with large companies in order to scale-up and commercialize their products. Such cooperation is referred as “Technological Cooperation” since it relies on development and commercialization of technology. In this research, as a multiple-case study in the arena of nanotechnology, five cases of technological cooperation are analyzed and key successful factors are identified. In this endeavor, 15 comprehensive interviews were conducted with both small tech companies and technology applicant companies, including experts of Nanotechnology Innovative Council (INIC) – playing the role of a mediator. Due to lack of a comprehensive... 

    The Size Effect of Coarse-Grained Modeling for Nonlinear Behavior of Nano-Structure Materials

    , M.Sc. Thesis Sharif University of Technology Khademabbasi, Navid (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsen (Supervisor)
    Abstract
    The development of Nanotechnology increasingly has elevated the urgency for the expansion of modern numerical and computational methods that have evaluating systems with capability at this scale. In spite of being fully capable of evaluating nanostructures, the existing techniques, such as Molecular Dynamics Methods, lack the ability to simulate large systems of practical size and time scales. Thus, being able to create a large model of realistic simulation, which is confined by the computational expense of the running Molecular Dynamics methods at hand, Coarse-Graining technique has recently become a very effective and beneficial method which refers to the development of simplified models of... 

    Boltzmann Method for Investigating the Non-Linear Mechanical Behavior of Coarse- Grained Crystals with FCC Network, Exploiting the Effect of Dislocation

    , M.Sc. Thesis Sharif University of Technology Sabetfard, Sajad (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsen (Supervisor)
    Abstract
    In these days world, the increasing growth of Nanotechnology has caused to invent and create new numerical and also computational methods which have more abilities and capabilities for evaluating systems in this scale. Although Some techniques, such as Molecular Dynamics Methods are capable of evaluating nanostructures, lack the ability to simulate large systems of practical size and time scales which is the most important index during the simulation. Therefore, in order to be able to produce an acceptable exact simulation of a large model, simulation of which is limited by the computational cost of the current molecular dynamics methods at hand, Coarse-Graining technique has recently become... 

    Planar molecular dynamics simulation of Au clusters in pushing process

    , Article International Journal of Nanomanufacturing ; Vol.5, No.3/4 , 2010 , pp.288-296 Mahboobi, S. H ; Meghdari, A. (Ali) ; Jalili, N. (Nader) ; Amiri, F. (Farshid) ; Sharif University of Technology
    Abstract
    Based on the fact that the manipulation of fine nanoclusters calls for more precise modelling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviours. Performing the planar simulations can provide a fairly acceptable qualitative tool for our purpose while the computation time is reduced extremely in comparison to 3D simulations. To perform this study, Nose-Hoover dynamics and Sutton-Chen interatomic potential will be used to investigate the behaviour of the aforementioned system. Pushing of... 

    The study of growth and coagulation of titania nanoparticles by chemical vapor synthesis

    , Article Journal of Nuclear Science and Technology ; No.53 , 2010 , pp. 20-29 Rahiminezhad-Soltani, M ; Saberyan, K ; Shahri, F ; Simchi, A. (Abdolreza) ; Sharif Univesity of Technology
    Abstract
    Chemical Vapor Synthesis route was used for synthesis of titanium dioxide (TiO2) nanoparticles in hot-walled reactor at 800degreeC using TiCl4 as precursor. The effect of processing parameters e.g., temperature and amount of precursor on phase structure, size, purity, coagulation and agglomeration of nanoparticles were investigated in this respect. Also, the H2O effects on the size, crystallinity, phase transformation and purity of nanoparticles were studied. Comprehensive experimental observations were confirmed by transmission electron microscopy, X-ray diffraction analysis and thermal gravimetric-differential thermal analysis results. The obtained results showed that by increasing the... 

    Suppression of dynamic pull-in instability in electrostatically actuated strain gradient beams

    , Article 2014 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014 ; 2014 , pp. 155-160 ; ISBN: 9781479967438 Edalatzadeh, M. S ; Vatankhah, R ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper, vibration suppression of micro-or nano-scale beams subjected to nonlinear distributed electrostatic force is studied. For the sake of precision, we use the beam model derived from strain gradient elasticity theory aimed at prediction of size effect. In addition, the electrostatic force is considered with first order fringing field correction. The continuous model of the strain gradient beam is truncated by using Kantorovich method as a semi-analytical finite element method. A boundary control feedback law is proposed to suppress forced vibrations of the beam. Both measurements and actuations are taken place in the boundary to avoid spillover instabilities. Simulation results... 

    Motion of deformable ring made of IPMC

    , Article Proceedings of SPIE - The International Society for Optical Engineering ; Vol. 8409 , 2012 ; ISSN: 0277786X ; ISBN: 9780819490872 Firouzeh, A ; Alasty, A ; Ozmaeian, M ; Sharif University of Technology
    Abstract
    In this paper application of Ionic Polymer Metal Composite (IPMC) as actuator in a deformable ring capable of locomotion is studied. Such a deformable ring moves as a result of gravitational force acting on its body when its shape changes. It can be used in exploration, search and rescue missions in future, where using conventional robots with rigid bodies and actuators is impossible. Large deformation induced by small stimulating voltage, low stiffness the sensing characteristics that in future work can be used in feedback control make IPMC a good choice for such an application. In this work first a model for IPMC is introduce that can be used in simulating deformation of IPMC in different... 

    Optimal sliding mode control of AFM tip vibration and position during manipulation of a nanoparticle

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; Vol. 12, Issue. PART A , 2010 , pp. 205-214 ; ISBN: 9780791843857 Babahosseini, H ; Khorsand, M ; Meghdari, A ; Alasty, A ; Sharif University of Technology
    Abstract
    This research regards to a two-dimensional lateral pushing nanomanipulation using Atomic Force Microscope (AFM). Yet a reliable control of the AFM tip position during the AFM-based manipulation process is a chief issue since the tip can jump over the target nanoparticle and then the process can fail. However, a detailed Modeling and understanding of the interaction forces on the AFM tip is important for prosperous manipulation control and a nanometer resolution tip positioning. In the proposed model, Lund-Grenoble (LuGre) dynamic friction model is used as friction force on the contact surface between the nanoparticle and the substrate. This model leads to a stick-slip behavior of the... 

    Monitoring the influence of dispersed nano-particles on oil-water relative permeability hysteresis

    , Article Journal of Petroleum Science and Engineering ; Vol. 124, issue , December , 2014 , p. 222-231 ; ISSN: 09204105 Parvazdavani, M ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    In recent years, polysilicon nanoparticles are used to enhance the oil recovery through the water injection process in oilfields. The contributing mechanisms are the reduction of interfacial tension and wettability alteration which lead to improving or decreasing the oil phase relative permeability and can be traced by change of relative permeability curves. However, profound understanding of the effect of dispersed nano-silica particles on the hysteretic behavior of relative permeability curves remains a controversy topic in the literature.The current study illustrates the influence of dispersed silica particles on hysteretic trend of two-phase curves of oil-water relative permeability.... 

    Investigation of the effect of water based nano-particles addition on hysteresis of oil and-water relative permeability curves

    , Article Society of Petroleum Engineers - SPE International Oilfield Nanotechnology Conference 2012 ; June , 2012 , p. 267-277 Parvazdavani, M ; Masihi, M ; Ghazanfari, M. H ; Sherafati, M ; Mashayekhi, L ; Sharif University of Technology
    Abstract
    It has been shown that one kind of poly silicon particles with sizes ranging from 10-500 nm, can be used in oilfields to enhance the oil recovery of water injection by 15-20%. The contributing mechanism might be reducing the interfacial tension which appears through improving relative permeability of the oil-phase. However, fundamental understanding of how hysteretic behavior of relative permeability curves affected by nanosilica particles remains a topic of debate in the literature. In this study, water as well as water dispersed nanosilica particles floods was performed on sandstone rock sample saturated by light crude oil supplied from one of Iranian oil reservoir, and the relative... 

    Nanoscale phase behavior on flat and curved membranes

    , Article Nanotechnology ; Vol. 25, issue. 50 , Dec , 2014 Andersen, T ; Bahadori, A ; Ott, D ; Kyrsting, A ; Reihani, S. N. S ; Bendix, P. M ; Sharif University of Technology
    Abstract
    The diverse physical properties of membranes play a critical role in many membrane associated biological processes. Proteins responsible for membrane transport can be affected by the lateral membrane order and lateral segregation of proteins is often controlled by the preference of certain membrane anchors for membrane phases having a physically ordered state. The dynamic properties of coexisting membrane phases are often studied by investigating their thermal behavior. Optical trapping of gold nanoparticles is a useful tool to generate local phase transitions in membranes. The high local temperatures surrounding an irradiated gold nanoparticle can be used to melt a part of a giant...