Loading...
Search for: mice
0.007 seconds
Total 45 records

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S.H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S. H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems

    , Article Critical Reviews in Biotechnology ; Volume 38, Issue 1 , 2018 , Pages 47-67 ; 07388551 (ISSN) Malekzad, H ; Mirshekari, H ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Baniasadi, F ; Sharifi Aghdam, M ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble... 

    Dynamic characterization and control of a parallel haptic interaction with an admittance type virtual environment

    , Article Meccanica ; Volume 55, Issue 3 , 2020 , Pages 435-452 Khadivar, F ; Sadeghnejad, S ; Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Springer  2020
    Abstract
    Haptic interfaces, a kinesthetic link between a virtual environment and a human operator play a pivotal role in the reproduction of realistic haptic force feedback of the virtual reality-based simulators. Since most of the practical control theories are model-based, the identification of the robot’s dynamics, for precise modeling of the system dynamics, is a process of high significance and usage. This research addresses dynamic characterization, performance issues, and structural stability, associated with a parallel haptic device interaction with an admittance type virtual environment. In this regard, considering the Lion identification scheme, we characterized the dynamics of a robot... 

    StrongestPath: a Cytoscape application for protein-protein interaction analysis

    , Article BMC bioinformatics ; Volume 22, Issue 1 , 2021 , Pages 352- ; 14712105 (ISSN) Mousavian, Z ; Khodabandeh, M ; Sharifi Zarchi, A ; Nadafian, A ; Mahmoudi, A ; Sharif University of Technology
    NLM (Medline)  2021
    Abstract
    BACKGROUND: StrongestPath is a Cytoscape 3 application that enables the analysis of interactions between two proteins or groups of proteins in a collection of protein-protein interaction (PPI) network or signaling network databases. When there are different levels of confidence over the interactions, the application is able to process them and identify the cascade of interactions with the highest total confidence score. Given a set of proteins, StrongestPath can extract a set of possible interactions between the input proteins, and expand the network by adding new proteins that have the most interactions with highest total confidence to the current network of proteins. The application can... 

    Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Dorri Nokoorani, Y ; Shamloo, A ; Bahadoran, M ; Moravvej, H ; Sharif University of Technology
    Nature Research  2021
    Abstract
    Using the skin tissue engineering approach is a way to help the body to recover its lost skin in cases that the spontaneous healing process is either impossible or inadequate, such as severe wounds or burns. In the present study, chitosan/gelatin-based scaffolds containing 0.25, 0.5, 0.75, and 1% allantoin were created to improve the wounds’ healing process. EDC and NHS were used to cross-link the samples, which were further freeze-dried. Different in-vitro methods were utilized to characterize the specimens, including SEM imaging, PBS absorption and degradation tests, mechanical experiments, allantoin release profile assessment, antibacterial assay, and cell viability and adhesion tests.... 

    Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Shahverdi, M ; Seifi, S ; Akbari, A ; Mohammadi, K ; Shamloo, A ; Movahhedy, M. R ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Fabrication of well-ordered and bio-mimetic scaffolds is one of the most important research lines in tissue engineering. Different techniques have been utilized to achieve this goal, however, each method has its own disadvantages. Recently, melt electrowriting (MEW) as a technique for fabrication of well-organized scaffolds has attracted the researchers’ attention due to simultaneous use of principles of additive manufacturing and electrohydrodynamic phenomena. In previous research studies, polycaprolactone (PCL) has been mostly used in MEW process. PCL is a biocompatible polymer with characteristics that make it easy to fabricate well-arranged structures using MEW device. However, the... 

    Dna-Rna hybrid (R-loop): From a unified picture of the mammalian telomere to the genome-wide profile

    , Article Cells ; Volume 10, Issue 6 , 2021 ; 20734409 (ISSN) Rassoulzadegan, M ; Sharifi Zarchi, A ; Kianmehr, L ; Sharif University of Technology
    MDPI  2021
    Abstract
    Local three-stranded DNA/RNA hybrid regions of genomes (R-loops) have been detected either by binding of a monoclonal antibody (DRIP assay) or by enzymatic recognition by RNaseH. Such a structure has been postulated for mouse and human telomeres, clearly suggested by the identification of the complementary RNA Telomeric repeat-containing RNA “TERRA”. However, the tremendous disparity in the information obtained with antibody-based technology drove us to investigate a new strategy. Based on the observation that DNA/RNA hybrids in a triplex complex genome co-purify with the double-stranded chromosomal DNA fraction, we developed a direct preparative approach from total protein-free cellular... 

    Expression and function of c1orf132 long-noncoding rna in breast cancer cell lines and tissues

    , Article International Journal of Molecular Sciences ; Volume 22, Issue 13 , 2021 ; 16616596 (ISSN) Shafaroudi, A. M ; Sharifi Zarchi, A ; Rahmani, S ; Nafissi, N ; Mowla, S. J ; Lauria, A ; Oliviero, S ; Matin, M. M ; Sharif University of Technology
    MDPI  2021
    Abstract
    miR-29b2 and miR-29c play a suppressive role in breast cancer progression. C1orf132 (also named MIR29B2CHG) is the host gene for generating both microRNAs. However, the region also expresses longer transcripts with unknown functions. We employed bioinformatics and experimental approaches to decipher C1orf132 expression and function in breast cancer tissues. We also used the CRISPR/Cas9 technique to excise a predicted C1orf132 distal promoter and followed the behavior of the edited cells by real-time PCR, flow cytometry, migration assay, and RNA-seq techniques. We observed that C1orf132 long transcript is significantly downregulated in triple-negative breast cancer. We also identified a... 

    Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications

    , Article Materials Science and Engineering C ; Volume 58 , 2016 , Pages 586-594 ; 09284931 (ISSN) Mahmoudifard, M ; Soudi, S ; Soleimani, M ; Hosseinzadeh, S ; Esmaeili, E ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper we introduce novel strategy for antibody immobilization using high surface area electrospun nanofibrous membrane based on ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling chemistry. To present the high performance of proposed biosensors, anti-staphylococcus enterotoxin B (anti-SEB) was used as a model to demonstrate the utility of our proposed system. Polymer solution of polyethersolfone was used to fabricate fine nanofibrous membrane. Moreover, industrial polyvinylidene fluoride membrane and conventional microtiter plate were also used to compare the efficiency of antibody immobilization. Scanning electron microscopy images were taken to... 

    Apoptotic and anti-apoptotic genes transcripts patterns of graphene in mice

    , Article Materials Science and Engineering C ; Volume 71 , 2017 , Pages 460-464 ; 09284931 (ISSN) Ahmadian, H ; Hashemi, E ; Akhavan, O ; Shamsara, M ; Hashemi, M ; Farmany, A ; Daliri Joupari, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Recent studies showed that a large amount of graphene oxide accumulated in kidney and liver when it injected intravenously. Evaluation of lethal and apoptosis gene expression in these tissues, which are under stress is very important. In this paper the in vivo dose-dependent effects of graphene oxide and reduced graphene oxide nanoplatelets on kidney and liver of mice were studied. Balb/C mice were treated by 20 mg/kg body weight of nanoplatelets. Molecular biology analysis showed that graphene nanoplatelets injected intravenously lead to overexpression of BAX gene in both kidney and liver tissues (P ≥ 0.01). In addition these nanoparticles significantly increase BCL2 gene expression in both... 

    Core-sheath gelatin based electrospun nanofibers for dual delivery release of biomolecules and therapeutics

    , Article Materials Science and Engineering C ; Volume 108 , 2020 Zandi, N ; Lotfi, R ; Tamjid, E ; Shokrgozar, M. A ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Coaxial electrospinning with the ability to use simultaneously two separate solvents provides a promising strategy for drug delivery. Nevertheless, controlled release of hydrophilic and sensitive therapeutics from slow biodegradable polymers is still challenging. To address this gap, we fabricated core-sheath fibers for dual delivery of lysozyme, as a model protein, and phenytoin sodium as a small therapeutic molecule. The sheath was processed by a gelatin solution while the core fibers were fabricated from an aqueous gelatin/PVA solution. Microstructural studies by transmission and scanning electron microscopy reveal the formation of homogeneous core-sheath nanofibers with an outer and... 

    The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: A systematic review and meta-analysis

    , Article Neuroscience and Biobehavioral Reviews ; Volume 140 , 2022 ; 01497634 (ISSN) Narmashiri, A ; Abbaszadeh, M ; Ghazizadeh, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Memory and motor deficits are commonly identified in Parkinson's disease (PD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is transformed to MPP+ via monoamine oxidase B (MAOB), which causes oxidative stress and destroys dopaminergic (DA) neurons in substantia nigra pars compacta (SNc) and is widely used to create animal models of PD. However, to-date, a comprehensive analysis of the MPTP effects on various aspects of PD does not exist. Here, we provide a systematic review and meta-analysis on the MPTP effects on memory and motor functions by analyzing 51 studies on more than one thousand animals mainly including rats and mice. The results showed that in addition to motor functions... 

    Influence of heavy nanocrystals on spermatozoa and fertility of mammals

    , Article Materials Science and Engineering C ; Volume 69 , 2016 , Pages 52-59 ; 09284931 (ISSN) Akhavan, O ; Hashemi, E ; Zare, H ; Shamsara, M ; Taghavinia, N ; Heidari, F ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In recent years, quantum dots (QDs) have been widely used in upcoming nanotechnology-based solar cells, light-emitting diodes and even bioimaging, due to their tunable optical properties and excellent quantum yields. But, such nanostructures are currently constituted by heavy elements which can threat the human health and living environment. Hence, in this work, the in vivo effects of CdTe nanocrystals (NCs) (as one of the promising QDs) on spermatozoa of male mice and subsequently on fertility of female mice were investigated, for the first time. To do this, CdTe NCs were synthesized through an environment-friendly (aqueous-based solution) method. The sperm cells presented a high potential... 

    Producing functional recombinant human keratinocyte growth factor in Pichia pastoris and investigating its protective role against irradiation

    , Article Enzyme and Microbial Technology ; Volume 111 , April , 2018 , Pages 12-20 ; 01410229 (ISSN) Bahadori, Z ; Kalhor, H. R ; Mowla, S. J ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    Keratinocyte Growth Factor (KGF) is a paracrine-acting, epithelial mitogen that plays a prominent role in the regeneration of damaged epithelial tissues. In spite of different attempts to produce recombinant human KGF in many organisms, including bacteria, mammalian cells, plant cells and insect cells; production of recombinant form suffers from lower yields and recovery relative to other recombinant proteins of similar size and properties. Due to many advantages of Pichia pastoris expression systems for producing industrial enzymes and pharmaceutical proteins, in this study P. pastoris was chosen as a host for KGF expression. For preparing human KGF coding sequence, MCF-7 cell line was... 

    Effects of short term and long term Extremely Low Frequency Magnetic Field on depressive disorder in mice: Involvement of nitric oxide pathway

    , Article Life Sciences ; Volume 146 , 2016 , Pages 52-57 ; 00243205 (ISSN) Madjid Ansari, A ; Farzam Pour, S ; Sadr, A ; Shekarchi, B ; Majid Zadeh, A. K ; Sharif University of Technology
    Elsevier Inc 
    Abstract
    Aims Previous reports on the possible effects of Extremely Low Frequency Magnetic Fields (ELF MF) on mood have been paradoxical in different settings while no study has yet been conducted on animal behavior. In addition, it was shown that ELF MF exposure makes an increase in brain nitric oxide level. Therefore, in the current study, we aimed to assess the possible effect(s) of ELF MF exposure on mice Forced Swimming Test (FST) and evaluate the probable role of the increased level of nitric oxide in the observed behavior. Main methods Male adult mice NMRI were recruited to investigate the short term and long term ELF MF exposure (0.5 mT and 50 Hz, single 2 h and 2 weeks 2 h a day). Locomotor... 

    Fabrication, modeling and optimization of lyophilized advanced platelet rich fibrin in combination with collagen-chitosan as a guided bone regeneration membrane

    , Article International Journal of Biological Macromolecules ; Volume 125 , 2019 , Pages 383-391 ; 01418130 (ISSN) Ansarizadeh, M ; Mashayekhan, S ; Saadatmand, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, lyophilized advanced platelet rich fibrin (A-PRF) was used in combination with collagen-chitosan membrane for the first time to combine advantages of both collagen and A-PRF membranes. Response surface methodology (RSM) was used to design the experimental condition and to correlate the effects of parameters, including chitosan/collagen (chit/col) weight ratio and A-PRF concentration on Young's modulus, mesenchymal stem cell (MSCs) viability and degradation rate of the membranes. Results showed that Young's modulus of the membranes was intensified by increasing chit/col weight ratio and decreasing A-PRF concentration from 3 to 8 MPa. Cell viability of MSCs was improved by both... 

    Preparation and characterization of self-electrical stimuli conductive gellan based nano scaffold for nerve regeneration containing chopped short spun nanofibers of PVDF/MCM41 and polyaniline/graphene nanoparticles: Physical, mechanical and morphological studies

    , Article International Journal of Biological Macromolecules ; Volume 167 , 2021 , Pages 881-893 ; 01418130 (ISSN) Mohseni, M ; S. A., A. R ; H Shirazi, F ; Nemati, N. H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Conductive self -electrical stimuli bioactive scaffolds could be used the potential for peripheral nerve regeneration with the maximum efficiency. To produce such conductive self-electrical stimuli bioactive scaffolds, chopped spun piezoelectric nanofibers of polyvinylidene fluoride/mesoporous silica nanoparticle (PVDF/MCM41) are prepared and incorporated in gellan/polyaniline/graphene (gellan/PAG) nanocomposites which have been previously prepared by incorporation of polyaniline/graphene (PAG) nanoparticles in gellan gel at 80 °C. Highly conductive binary doped polyaniline/graphene nanoparticles are prepared by chemical oxidative polymerization of aniline monomer using in-suite... 

    Alginate-based multifunctional films incorporated with sulfur quantum dots for active packaging applications

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 215 , 2022 ; 09277765 (ISSN) Riahi, Z ; Priyadarshi, R ; Rhim, J. W ; Lotfali, E ; Bagheri, R ; Pircheraghi, G ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Sulfur quantum dots (SQDs) were fabricated using a facile hydrothermal method and used for the preparation of functional food packaging film and compared the properties with other sulfur-based fillers like elemental sulfur (ES) and sulfur nanoparticles (SNP). The SQDs have an average size of 5.3 nm and were very stable in aqueous suspension. Unlike other sulfur-based fillers, the SQD showed high antioxidant, antibacterial and antifungal activity, but no cytotoxicity was found for L929 mouse fibroblasts even after long-term exposure of 48 h. When sulfur-based fillers were added to the alginate film, SQD was more evenly dispersed in the polymer matrix than SNP and ES. The addition of SQD to... 

    Hybrid ultrasound-activated nanoparticles based on graphene quantum dots for cancer treatment

    , Article International Journal of Pharmaceutics ; Volume 629 , 2022 ; 03785173 (ISSN) Ramedani, A ; Sabzevari, O ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Theranostic liposomes have recently found a broad range of applications in nanomedicine due to stability, the high solubility of biomacromolecules, bioavailability, efficacy, and low adverse effects. However, the limitations of liposomes concerning the short systemic circulation in the body, limited controllability of the release rate, and the inability of in vivo imaging remain challenging. Herein, the development of novel hybrid ultrasound-activated piezoelectric nanoparticles based on a hybrid liposome nanocarrier composed of poly(vinylidene fluoride‐trifluoroethylene), graphene quantum dots (GQDs), and Silibinin (a hydrophobic drug) is presented. The hybrid nanoparticles are an...