Loading...
Search for: metallizing
0.026 seconds
Total 1764 records

    “Does cinema form the future of robotics?”: a survey on fictional robots in sci-fi movies

    , Article SN Applied Sciences ; Volume 3, Issue 6 , 2021 ; 25233971 (ISSN) Saffari, E ; Hosseini, S. R ; Taheri, A ; Meghdari, A ; Sharif University of Technology
    Springer Nature  2021
    Abstract
    Abstract: Robotics and Artificial Intelligence (AI) have always been among the most popular topics in science fiction (sci-fi) movies. This paper endeavors to review popular movies containing Fictional Robots (FR) to extract the most common characteristics and interesting design ideas of robots portrayed in science fiction. To this end, 134 sci-fi films, including 108 unique FRs, were investigated regarding the robots’ different design aspects (e.g., appearance design, interactive design and artificial intelligence, and ethical and social design). Also, in each section of this paper, some characteristics of FRs are compared with real social robots. Since some researches point to the... 

    , M.Sc. Thesis Sharif University of Technology Sartipizade, Hossein (Author) ; Haeri, Mohammad (Supervisor)
    Abstract
    Gas Metal Arc Welding (GMAW) process is one of the most applicable component in the industry due to its high speed and capability of employing for wide ranges of materials. The quality of products in a welding process is relevant to the quality of welding which is determined by characteristics like shape and size of droplet during detachment. In order to improve the quality of welding, a precise model of the process is required. There are many various model presented for GMAW process based on its dynamic equations. Almost all of these models assume the process as a continuous state system. However the process includes sudden variants in droplet detachment that is known as hybrid behavior.... 

    Control of Base Metal Capacity of Welded Connections under Multiaxial Loading

    , M.Sc. Thesis Sharif University of Technology Malek Ghaini, Niloofar (Author) ; Maleki, Shervin (Supervisor)
    Abstract
    Block shear failure in the parent material is considered as a common potential failure mode in welded connections used in steel structures. However, there is only little research reported on the block shear failure of welded connections under multiaxial loading. Multiaxial loading is defined as loading not parallel or perpendicular to weld lines and in the case of in planar eccentricity results in torsional loads. In this research a nonlinear finite element model is developed to study the effect of connection geometry, weld group configuration, and eccentricity of lap splice connection on block shear capacity. The case studied concerns a 3 milimeter thick structural steel plate (CSA G40.21... 

    Control of Formation, Dispersion and Morphology of TiB2 Particles in Al-TiB2 Metal Matrix In-Situ Composite through Optimization of Melt Condition

    , M.Sc. Thesis Sharif University of Technology Khalatbari, Fatemeh (Author) ; Varahram, Naser (Supervisor) ; Davami, Parviz (Co-Advisor)
    Abstract
    A study has been carried out on the formation of TiB2 particles in an aluminum based in-situ metal matrix composite by mixing master alloys containing Ti and B i.e., Al-10Ti and Al-8B with a Ti:B weight ratio of 5:2. It was shown that the microstructure of the composite was greatly affected by the controlling factors of the in-situ reaction like temperature, reaction time and stirring of the melt. An increasing reaction time leads to the dissolusion of the primary phases (AlB2 and Al3Ti) and the increase in TiB2 volume fraction. Optical microscope and SEM images were used to study these changes and XRD analysis was applied to confirm these observations. The act of melt stirring in short... 

    Gold Nanowaste Reduction and Recycling Using Chemical Methods

    , M.Sc. Thesis Sharif University of Technology Sotudeh, Ali (Author) ; Hormozi-Nezhad, Mohammad Reza (Supervisor) ; Alamolhoda, Ali Asghar (Supervisor)
    Abstract
    The growing use of nanomaterials leads to causing harm to the aquatic environment resulting in a demand for effective methods to remove these nanomaterials from aquatic environment. On the other hand, the high cost of raw materials used for the production of noble metal nanomaterial limits their use or requires the development of recycling and recovery methods. In this study, we found that citrate capped gold nanoparticles (cit-AuNPs) could be removed effectively from waste water using aluminum chloride (AlCl3) coagulant. The effect of pH, of coagulant concentration, and alkalinity on the performance of this coagulant was investigated. It has... 

    Application of Magnetic Bi-and Trimetallic Nanocatalysts Based on Fe in the Synthesis of Polycyclic Heterocycles

    , M.Sc. Thesis Sharif University of Technology Mousazadeh Fazeli, Pegah (Author) ; Matloubi Moghaddam, Firooz (Supervisor) ; Sajjadi, Ali Akbar (Co-Advisor)
    Abstract
    Nowadays, two metallic catalyst are used in many organic reaction; so,different types of these catalytic systems have been synthesized up to now and been employed. One of these systems that recently has attracted many attention is magnetic two metallic nanocatalyst, that showing very good activity due to the synergistic effect between the two metal and fine particle size.On the other hand, poly cyclic heterocyclic compounds are one the main families of organic compounds having many application in biochemicals and pharmaceuticals. The main purpose of this project is to introduce a new method for the synthesize of these compounds such as tetrazoles and 1,4-dihydropyridines, using two- and... 

    Prediction of the Dead Metal Zone for Determination of the Exit Curvature Profile in the Extrusion of Non-Symmetrical Flat

    , M.Sc. Thesis Sharif University of Technology Rastegar Borkhyli, Meysam (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    The extrusion process of flat dies in non-symmetrical sections is among processes which in spite of enormous applications, has not been thoroughly understood due to complexities of analyzing the section deformation process. In these dies, a zone is formed during egression of billet from die in which the material is stationary and accordingly the material on profile of this zone shears. This zone is called the dead metal zone. Dead metal zone is a natural non-linear die and it is pragmatic to obtain the value of the deviation. In the present work, determine the curvature of the exit profile by using prediction of the dead metal zone profile is target. The dead metal zone profile is assumed... 

    Predicting the Fatigue Life of Repaired Specimens by Composite Patch Exposed to Corrosive Environments Using Artificial Neural Network and Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Bakhshiyan, Amir Hossein (Author) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    In this research, the application of composite patch in the repair of pipes damaged by corrosion has been investigated. Numerical modeling, artificial neural network and Taguchi algorithm are used for this purpose. In the numerical modeling section, the accuracy of modeling performance has been verified by experimental results of other researchers. Then, the effect of various parameters such as depth and, angle of corroded area, fiber orientation in the composite patch and angle of composite patch have been investigated. The depth and the angle of the corroded area and the angle of orientation of the fiber have been shown to have a large effect on the growth life of fatigue cracks. For... 

    Ionic Polymer-Metal Nanocomposite; Multiscale Simulation, Fabrication and Mechanical Characterization

    , Ph.D. Dissertation Sharif University of Technology Ozmaian, Masoumeh (Author) ; Naghdabadi, Reza (Supervisor) ; Irajizad, Azam (Supervisor) ; Ejtehadi, Mohammad Reza (Co-Advisor)
    Abstract
    Ionic polymer metal nanocomposites (IPMNCs) are among the advance materials which have been widely used recently as smart materials. These nanocomposites, which are made of polymeric layers (Nafion) plated by metallic or non-metallic conductive electrodes, show large deformations under low applied voltages. The advance materials like these nanocomposites have resolved the problems of the conventional actuators and helped in producing accurate systems.
    Several methods have been used to predict the behavior of IPMNCs which any of them consider some simplifying assumptions. In these materials physical phenomena happen at the molecular scale and deformations observed at the large scale.... 

    Introduction to Developing, Modification, and Customization of the Guidelines for Replacement of Metal Patch Repairs with the Composite Patches

    , M.Sc. Thesis Sharif University of Technology Davoodi Moallem, Misam (Author) ; Abedian, Ali (Supervisor)
    Abstract
    The phenomenon of aging causes a great deal of damage to the airborne structures for which there is a specific maintenance instruction, or if an unexpected damage occurs in specific area of a structure, this damage must be repaired and a special repair process must be designed for it. However, due to the diversity of damages and also variations of the implemented loads, the load is transferred to other structural elements, hence, it is necessary to extend the life of the structure in order to identify these loaded elements and reinforce the applied forces. First, this phenomenon involves a design of a large number of metal patches, where a large number of drills have to be made in the body... 

    Comparison of the Performance of Nanostructured Metal Oxides and Metal Sulfides as Electrode Active Materials in the Construction of Supercapacitors

    , M.Sc. Thesis Sharif University of Technology Molaei Zarandi, Zeynab (Author) ; Ghotbi, Cyrus (Supervisor) ; Khorasheh, Farhad (Supervisor) ; Asgharinezhad, Ali Akbar (Supervisor) ; larimi, Afsaneh Sadat (Supervisor)
    Abstract
    High-capacity electrode materials are crucial for enhancing the performance of supercapacitors. Transition metal sulfides are considered promising materials for supercapacitor applications due to their high theoretical capacity and good electrical conductivity. Additionally, cerium oxide improves the performance of supercapacitors due to stable reversible oxidation states and greatly supported the faradaic redox reaction. In this study, ceria nanosheets incorporated with MCoS (M=Mn, Zn, Cu) were synthesized successfully through a facile hydrothermal method by sulfidation of MCo LDH/CeO2. The structural and morphological characteristics were analyzed using X-ray diffraction, scanning electron... 

    Comparing Glass Formability of Cu-Zr and Ni-Zr Systems by Molecular Dynamics Simulation

    , M.Sc. Thesis Sharif University of Technology Ghaemi, Milad (Author) ; Tavakoli, Rohollah (Supervisor)
    Abstract
    Metallic glasses (MG) are a group of materials that have unique properties such as high yielding strength and high elastic deformation. Because of limitation in the production of these materials, a few industrial materials of MG have been made so far. A few of binary alloys, like binary alloys made of Cu-Zr, have high Glass Forming Ability (GFA) in medium cooling rates. Between two binary systems of Cu-Zr and Ni-Zr, although constituent elements in aspect of atomic radius, electronic structure, physical properties, phase diagrams and intermetallic compounds are so similar to each other, but GFA between them are very different. For example, in Cu-Zr system there are compounds, such as... 

    Comparison Of Operation Of Metal Dampers In Steel Structures Based On Endurance Time Method

    , M.Sc. Thesis Sharif University of Technology Mirjalili, Amir (Author) ; Esmaeil Pourestekanchi, Homayun (Supervisor)
    Abstract
    Based on special properties of metal dampers such as high energy dissipation, stable hysteric cycles and simple application, low cost, insensitivity to changes of temperature and ability to be substituted after occurring of earthquakes, they are being used for structures control. ADAS and SSD are two kinds of metal dampers which are connected to top of the chevron braces and under the middle of beams. When shear forces are applied, these dampers yield and enter the plastic zone. In Endurance Time (ET) method gradually intensifying acceleration functions are created in a manner that the linear and nonlinear response spectra of them, while being proportional to average of real earthquakes... 

    Comparative Study on Effect of Metallic Yield Dampers and Friction Devices on Response of Steel Structure

    , M.Sc. Thesis Sharif University of Technology Ziaee Tadjaddod, Nima (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Passive energy dissipation systems are mechanical devices which could spread input energy, reduce response and decrease possible damage of the structure. Dampers were identified as a strong energy dissipation devices with cost efficiency and easy installation and maintanance. In this study, effects of using friction and metallic yield dampers to reduce structural responses are investigated. In addition, a comparison between these devices for reducing responses are conducted. Two 5 and 10 stories buildings with intermediate steel moment frames with and without damper are modeled and designed. It is seen, using of dampers could be reduce sections’ sizes. Seven pairs of earthquake records... 

    Numerical Study of Two Novel Metallic Dampers with Torsional Mechanism

    , M.Sc. Thesis Sharif University of Technology Khalooei, Shayan (Author) ; Mohtashm Dolatshahi, Kiarash (Supervisor)
    Abstract
    The aim of this study is introducing and assessing two torsion-based metallic dampers which are named Torsional Disc and Torsional Cylinder dampers based on their geometry and energy absorption mechanisms. As expected, a steel disc and a steel cylinder are exposed to torsion in the Torsional Disc and Torsional Cylinder dampers respectively, and energy absorption occurs through torsional yielding of those two elements. In the introduction section, a mechanism is introduced to put the dampers under pure torsion so as to yield a desirable performance. The dampers are designed to be placed between Chevron braces and the floor beam, and the pure torsion is exerted, through the mentioned... 

    Study of Cationic Impregnation Method on Zeolite Catalyst for Upgrading of Methanol to Gasoline (MTG)Process

    , Ph.D. Dissertation Sharif University of Technology Kazemi Zangeneh, Fatemeh (Author) ; Ghanbari, Bahram (Supervisor)
    Abstract
    In the present research, the conversion of methanol to hydrocarbons was studied over a new series of mesoporous low-silica HZSM-5 (Si/Al=11) catalysts impregnated with cations such as Fe, Zn, Mo and Cr. A systematic study on the effect of stepwise modification of the catalysts for the conversion of methanol to gasoline (MTG) was undertaken in a fixed-bed tubular reactor under ambient pressure at 375 °C, feeding with weight hourly space velocity (WHSV) of 2 h−1. The catalysts were prepared in the absence and presence of cationic promoted factors, in both alkaline and neutral aqueous solutions. The final catalysts characterized by using Fourier-transform infrared, X-ray diffraction, X-ray... 

    Investigation of Toughening Mechanisms in Al/Al3Ti In-Situ Hot Extruded Composites

    , M.Sc. Thesis Sharif University of Technology Rezaei, Alireza (Author) ; Madaah Hosseini, Hamid Reza (Supervisor)
    Abstract
    In this study in-situ Al/Al3Ti was fabricated by mechanical alloying, hot extrusion and subsequent heat treatment. First, initial pure powders of Al and Ti were mechanically alloyed with 5 weight percentages of Ti for 40 hours. The as-hot extruded samples containing 5 wt% of initial Ti particles, were exposed to heating at 600 oC for various time intervals up to 10 hours. Microstructure analysis by OM and SEM proved that in-situ Al3Ti phase was formed as a layer around Ti particles by solid reactive diffusion between Al and Ti particles. After 10 hours of heating, all the Ti particles were consumed and transformed to Al3Ti. Mechanical properties of samples were investigated by Brinell... 

    Study on Cation and Fullerene Recognition by OxNx-Aza Crown Macrocyclic Ligands

    , M.Sc. Thesis Sharif University of Technology Safar koopayeh, Barzin (Author) ; Ghanbari, Bahram (Supervisor)
    Abstract
    In this research, a new group of N2O2–azacrown macrocyclic ligands with different macroring size from 15 to 18 was synthesized using one-pot facile and high yield reaction. The products were characterized applying FT-IR, 1H and 13C NMR spectroscopies as well as elemental analysis. The single crystal structure of 18-membered macrocyclic ligand was also determined by x-ray crystallography. The crystallographic data showed such strong inter-molecular hydrogen bonding which excluded their nitrogen-donor groups, and initial investigation with UV-Vis spectroscopy shows no intraction with [60]fullerene, despite of presence of these interacrtions in their parent macrocycles. The result of Job’s... 

    Modeling Secondary Organic Aerosol Formation from Fuel Combustion and Evaporation, Using Box Model and Primary and Secondary Source Apportionment of Fine Particulate Matter, Using PMF Receptor Model

    , Ph.D. Dissertation Sharif University of Technology Esmaeilirad, Sepideh (Author) ; Hosseini, Vahid (Supervisor) ; Shamloo, Amir (Co-Supervisor)
    Abstract
    Focus of the present research is on the study and cognition of sources of carbonaceous compounds present in PM2.5, particularly secondary organic carbon. For this purpose, two different approaches were used. The first approach investigates the SOA formation from internal combustion engines exhaust and unburned fuel (bottom-up approach). The second approach studies the contribution of each of the primary and secondary sources to PM2.5 mass, whereby secondary organic carbon share is obtained (top-down approach). Modeling SOA formation from vehicles exhaust showed that diesel vehicles have greater SOA formation potential than gasoline vehicles, due to large amount of S/IVOCs present in their... 

    Investigation of Electro-Optical Properties of Heterostructures based on 2-D Layered Materials by Quantum Simulation

    , M.Sc. Thesis Sharif University of Technology Saadat Somaeh Sofla, Zahra (Author) ; Simchi, Abdolreza (Supervisor) ; Shayeganfar, Farzaneh (Supervisor)
    Abstract
    Density Functional Theory is one of the most robust Ab-intio methods for describing the structural and electronic properties of a wide range of materials. The ability to predict the material properties changes due to targeted material manipulation at the atomic scale has reduced the cost of many empirical experiments. It has improved the knowledge and understanding of the investigation and producing new materials and devices. Tow dimensional heterostructures are highly regarded due to their unique optoelectronic properties, potential application in nanoelectronic devices, energy storage devices, solid-state devices, and photovoltaic devices. In this study, the two-dimensional materials...