Loading...
Search for: mehrany--khashayar
0.011 seconds
Total 56 records

    Circuit Model for Periodic Plasmonic Nanostructures Used as Light-rapping Back-structures in thin Film Solar Cells

    , M.Sc. Thesis Sharif University of Technology Yarmoghaddam, Elahe (Author) ; Mehrany, Khashayar (Supervisor) ; Khavasi, Amin (Co-Advisor)
    Abstract
    In recent years, thin-film photovoltaic cells with thicknesses of less than 1-2 µm have been developed with potentially lower production costs. Due to the small thickness of the absorbing semiconductor in these cells, the absorption is inevitably low at energies close to the electronic band gap of the semiconductor. This is particularly a problem for thin-film devices. Recently، periodic metallic nanostructures supporting surface plasmons have been introduced as alternative solutions to achieve light trapping in thin-film solar cells.Full numerical methods are usually used for the analysis of these periodic structures. The main drawback of these methods is that they are time-consuming and... 

    Design of Metamaterials for Transparent Electrodes, Anti-Reflection Coating, and Light Trapping Structures

    , M.Sc. Thesis Sharif University of Technology Kafaie Shirmanesh, Ghazaleh (Author) ; Mehrany, Khashayar (Supervisor) ; Khavasi, Amin (Co-Advisor)
    Abstract
    In several electro-optic and optoelectronic devices, we require the structures with simultaneous high electrical conductivity and optical transparency so as to transmit the incident light. Transparent Conductive Electrodes (TCEs) that are both highly conductive and transparent were introduced to be an answer to the mentioned challenge. Periodic arrays of metallic holes are amongst the most important structures that are used as transparent electrodes. Using the metals with low electrical resistivity, such as Au and Ag, provides these structures with high electrical conductance. On the other hand, since these micro/nano structures support the propagation of guided electromagnetic waves, light... 

    Optimizing the Balance Between Resolution, Field-of-View and Depth-of-field in Three-dimensional Imaging

    , Ph.D. Dissertation Sharif University of Technology Kavehvash, Zahra (Author) ; Mehrany, Khashayar (Supervisor) ; Bagheri, Saeed (Supervisor) ; Massoumian, Farnaz (Co-Advisor)
    Abstract
    In this thesis a rigorous approach toward systematic quantification of qualitative fea-tures in a three-dimensional (3D) integral imaging is proposed. Incorporating the concepts of sampling rays and sampling points, the first approach is based on geo-metrical optics and quantifies the lateral and depth resolutions of the system within the field-of-view (FOV) and depth-of-field (DOF). The obtained results are justified through experiments. In the next step, the principals of wave optics are employed to measure the lateral and depth resolutions of the system. To this end, the concept of point-spread function is generalized to three-dimensional imaging systems. Through this systematic approach the... 

    Design of Low Frequency High Resolution Integrated Bioimpedance Meter

    , M.Sc. Thesis Sharif University of Technology Kaveh, Mohammad (Author) ; Atarodi, Mojtaba (Supervisor) ; Mehrany, Khashayar (Supervisor)
    Abstract
    This thesis activities, consists of three main parts. The first part is, manufacturing and optimization of the electrical part of blood glucose measurement devices, based on electrochemical sensors. In this part, design of blood glucose measurement systems based on two and three electrode electrochemical sensors are proceeded and the accuracy of the electrical block, is increased up to 1mg/dl according to sensor current range. The second part, is related to the design of different probes for blood electrical characteristics (impedance magnitude) measurements, at low frequencies. Measurements with these probes show, first the blood impedance magnitude range at low frequencies and moreover,... 

    Analysis of Special Periodic Structures with Differential Method

    , M.Sc. Thesis Sharif University of Technology Kazemi Jahromi, Ali (Author) ; Mehrany, Khashayar (Supervisor) ; Rashidian, Bizhan (Supervisor)
    Abstract
    In this thesis, the Maxwell's equations are transformed into a set of ordinary differential equations and then solved in periodic structures by using the differential method (DM). The periodic structures considered in this thesis are carved in linear anisotropic, nonlinear isotropic and nonlinear anisotropic media. Different numerical issues, e.g. stability and convergence rate, are addressed by following the conventional methods, e.g. S- and R- matrix formalism, and Fourier factorization. In addition, an algorithm is proposed for fast and efficient analysis of periodic structures with identical layers. Binary gratings and photonic crystals are examples of such structures. In this algorithm,... 

    Analysis of EM Wave Propagation in Inhomogeneous Time-Varying Media

    , M.Sc. Thesis Sharif University of Technology Chegnizadeh, Mahdi (Author) ; Memarian, Mohammad (Supervisor) ; Mehrany, Khashayar (Supervisor)
    Abstract
    Time-varying media have been in center of attention since recent years for their plethora of applications. Achieving non-reciprocity, one-way propagation, frequency modulation, and signal amplification are some applications of such media which are accessible from microwave to optical frequencies. The aim of this thesis is to first find a method for the analysis of wave propagation in homogeneous time-varying media. To this end, a new formulation is presented based on differential transfer matrices enabling us to find amplitudes, average power, and average energy of a wave in a homogeneous time-varying medium for arbitrary temporal variation of permittivity. In addition,this formulation... 

    Implementation and Analysis of Optical Isolation using Reciprocal and Nonreciprocal Elements

    , M.Sc. Thesis Sharif University of Technology Pooya Fard, Ali (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    In this thesis we study the possibility of unidirectional transmission of light using reciprocal and nonreciprocal elements. Unidirectional transmission will allow us to separate the coupling of light into and out of resonators and design unidirectional waveguides. We start by studying the effects of one-sided modulations of dielectric constant of reciprocal structures. One-sided modulation will satisfy the phase matching condition for the coupling of two waves only in one direction. Using coupled mode theory, we study one sided modulation in layered media. Next, we find the exact solution to such strucures using transfer matrix method and analyze one-sided modulation in waveguide... 

    Anomalous Reflection and Transmission in Resonant Magneto-Optic Structures

    , M.Sc. Thesis Sharif University of Technology Pahlavan, Payman (Author) ; Mehrany, Khashayar (Supervisor) ; Rajaei, Behzad (Co-Advisor)
    Abstract
    In this thesis, light transmission in dielectric slit arrays on metallic and magneto-optical material has been analyzed by mode matching method together with numerical simulations on commercial softwares such as Comsol Multiphysics and CST microwave studio. It has been shown that light transmission can be attributed to either the Fabry-Perot resonances or a collective resonance phenomenon across the array. In the first case, the transmission resonance is related to the slit depth and is confined to a single slit. In the second case; however, the resonant mechanism affects several neighboring slits. Surprisingly the former is converted to the latter by increasing the slit depth. Furthermore... 

    Finding the Proper Input Masking for Improving the Performance of Optical Reservoir Computers

    , M.Sc. Thesis Sharif University of Technology Hemmatyar, Omid (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses a semiconductor optical amplifier as nonlinearity, and a Fabry-Perot Resonator as a key element to establish the virtual nodes, connecting them and consequently, build the virtual neural... 

    Microwave Inspired Easy-to-Design Nano-Couplers for Hybrid Photonic-Plasmonic Waveguide Structures

    , M.Sc. Thesis Sharif University of Technology Hodaei, Hossein (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    Potential of plasmonic waveguide structures to confine light in sub-wavelength scales attracted many attentions in recent years. Among these structures planar metal-insulator-metal waveguide and plasmonic slot waveguide are more promising. That is because of their easy fabrication process along with their various reported applications. However, there are some obstacles in the path of developing plasmonic integrated circuits, among whichhigh propagation loss can be named as the most important. To solve this issue, photonic waveguides can be used as the lossless interconnections between small footprint plasmonic components on optical chips. Therefore, application of plasmonic slot waveguide... 

    Optimization of ASR and Combination with FMM for the Analysis of Metamaterials and Photonic Crystals in Three Dimensional Structures

    , M.Sc. Thesis Sharif University of Technology Nekuee, Amir Hossein (Author) ; Akbari, Mahmood (Supervisor) ; Mehrani, Khashayar (Supervisor)
    Abstract
    To design and identify specific properties of Metamaterials we need methods that accurately and quickly provide precise information about these composite materials for engineers. In this thesis we use FMM method with ASR technique for the analysis of Metamaterials and photonic crystals in three dimensional structures. In the second chapter FMM method is described briefly and then ASR technique for applying in the FMM method is introduced. ASR approach has large convergence rates in all types of gratings particularly metallic ones and with optimization that we have done for two dimensional periodic gratings convergence speed is increased more. In the third chapter using ASR reflection and... 

    Analysis of Nonlinear and Plasmonic Nano-Photonic Structures

    , M.Sc. Thesis Sharif University of Technology Naqavi, Ali (Author) ; Mehrany, Khashayar (Supervisor) ; Khorasani, Sina (Supervisor)
    Abstract
    Different methods of shifting and shaping of space-time electromagnetic pulses are in this work investigated by nonlinearity and/or dispersion. Developing two dimensional (2D) finite difference time domain (FDTD) codes in the nonlinear regime and taking the optical dispersion of ideal metals into account, nanophotonic and plasmonic structures are analyzed in this thesis.
    Goos-Hänchen shift, superprism effect, and optical bistability are particularly emphasized. A heuristic approximation is presented to extract the Goos-Hänchen shift at the interface of 1D and 2D photonic crystals. The superprism effect for electric polarization – where the electric field vector is perpendicular to the 2D... 

    Controlling Properties of Optical Pulses by Using Photonic Crystal Based Structures

    , Ph.D. Dissertation Sharif University of Technology Miri, Mehdi (Author) ; Rashidian, Bizhan (Supervisor) ; Mehrany, Khashayar (Co-Advisor)
    Abstract
    Because of widespread use of optical communication systems, analysis of optical wavepacket behavior during propagation in optical devices is of great importance. On the other hand, constant demand for improving the quality of data transmission and increasing data processing speed raises the necessity of studying novel electromagnetic structures for the purpose of designing new optical devices. Therefore, Photonic Crystal (PC) based structures, for their unique optical properties, have been subject of vast investigation in last two decades. Control of optical wavepacket behavior in photonic crystal based structures is considered in the present dissertation. Depending on the structure under... 

    Efficient Extraction of Defect Modes in Photonic Crystals and Investigation of Impedance Definability

    , M.Sc. Thesis Sharif University of Technology Miri, Mohammad Ali (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    In this thesis we focus on the extraction of resonance modes in photonic crystal resonators. This work could be divided in two different parts: in the first part we apply the Galerkin’s method effectively to the two and three dimensional structures, in the second part that constitutes the main part of this thesis we derive transmission line models for these structures. Fist we derive transmission line models for resonators based on the point defect and line defect in two-dimensional photonic crystals. Then we generalize this model to the three-dimensional photonic crystals. Finally we apply the same approach to the coupled resonators and analyze the coupled resonator optical waveguide. In... 

    Over 10-b On-Chip Impedance Measurement System for High Frequency Range

    , M.Sc. Thesis Sharif University of Technology Mirjalili, Ramin (Author) ; Atarodi, Mojtaba (Supervisor) ; Mehrani, Khashayar (Supervisor)
    Abstract
    Diabetes is one of the most catastrophic diseases in the world. There will be an end to patients’ problems if scientists can invent the artificial pancreas, but there is no implantable sensing core available. All of the sensors used for measuring blood glucose level were based on an electrochemical sensor which will generate a glucose level dependent electric current. The chemical structure of that sensor will deny its usability for in vivo applications. By exploring several biological and electrical literatures we introduced a fully electrical method for sensing the blood glucose level by impedance measurement. In this thesis we introduced a new method for sensing the blood glucose... 

    Three Dimensional Analyses of Binary Lenses

    , M.Sc. Thesis Sharif University of Technology Mahdavipour, Omid (Author) ; Rashidian, Bijan (Supervisor) ; Mehrany, Khashayar (Supervisor)
    Abstract
    Nowadays, Diffractive lenses with the binary profile have extensive application in integrated optics and other areas photonics. These elements-because of their compatibility with integrated circuits fabrication methods- have easy and efficient fabrication processes. They also have low aberration and they offer vast degree of freedom in designing process. The main objective of this thesis is to present an effective method to analyze these binary lenses in three dimensions. From different vectorial analyses methods, Boundary Element Method (BEM) has been chosen because of its different advantages like appropriate precision and higher speed in comparison with other methods. Yet this method has... 

    Analysis of Nonuniform Superconducting Transmission Lines and Microstrips in Microwave Regime

    , M.Sc. Thesis Sharif University of Technology Monem Haghdoust, Zahra (Author) ; Mehrany, Khashayar (Supervisor) ; Fardmanesh, Mehdi (Supervisor)
    Abstract
    Nonuniform superconducting microstrip transmission lines in microwave regime have been investigated. Nonuniform transmission lines provide the capability of controlling line parameters. Photonic structures with subwavelength features can be homogenized and thus be accurately approximated by homogeneous yet spatially dispersive structures. This idea is here applied to nonuniform superconducting transmission lines with subwavelength nonuniformities, i.e. subcentimeter features in the microwave regime. This modelling is quite useful in geometrical and optical control of quasi-TEM wave propagation and dispersion engineering along microwave superconducting lines. This approach has applications... 

    Analysis and Design of Binary Optics Lenses

    , M.Sc. Thesis Sharif University of Technology Motamedi, Nojan (Author) ; Mehrany, Khashayar (Supervisor) ; Rashidian, Bijan (Supervisor)
    Abstract
    Diffractive optical elements with binary surface profile are of great importance in integrated optical applications. Being easy to fabricate and having high degree of freedom in design, such devices play an outstanding role in optical applications. Specifically, binary (multilevel) lenses are investigated in this dissertation. These lenses are fabricated through conventional IC fabrication methods (lithography, etching, …) and have an acceptable performance and small aberration with proper design. Different scalar and vectorial methods for the analysis of finite aperture diffractive optical elements have been investigated and advantages and disadvantages of each one have been discussed.... 

    Modeling of Sub-wavelength Normal and Superconducting Nonuniform Transmission Lines in the Quasi-static Approximation

    , M.Sc. Thesis Sharif University of Technology Mardy, Zahra (Author) ; Fardmanesh, Mahdi (Supervisor) ; Mehrany, Khashayar (Supervisor)
    Abstract
    In this thesis, we have investigated nonuniform normal and superconducting microstrip transmission lines in microwave regime. Photonic structures with subwavelength features can be homogenized and thus be accurately approximated by homogeneous structures. This idea is here applied to nonuniform transmission lines with subwavelength nonuniformities, i.e. subcentimeter features in the microwave regime. We present an analytical model based on telegraphers’ equations in order to obtain line propagation characteristics; characteristic impedance, propagation constant, and group velocity. The accuracy of analysis in normal and superconducting lines is evaluated by measurement and electromagnetic... 

    Photonic Methods for Ultra-broadband RF Arbitrary Waveform Generation

    , Ph.D. Dissertation Sharif University of Technology Mokhtari, Arash (Author) ; Akbari, Mahmood (Supervisor) ; Mehrany, Khashayar (Co-Advisor)
    Abstract
    This thesis includes five major parts and eight chapters. In the first part, the literature of arbitrary waveform generation is reviewed. The expansion and diversity of telecommunication services like WIMAX , UWB , RoF , satellite telemetry methods and sensor networks require ultra-broadband arbitrary waveform generation methods. The ultra-broadband signals are those signals with normalized bandwidth (%BW is the ratio of signal’s bandwidth to the central frequency) over 15%. The main approach to enjoy the advantages of photonic processing is to modulate microwave signal with the light and then feed it to the optical signal processor. This light processor in case of linearity is called...