Loading...
Search for: mechanical-stability
0.01 seconds
Total 43 records

    Friction Stir Welding of Severely Deformed Aluminum Using Hybrid Powders

    , M.Sc. Thesis Sharif University of Technology Moosavi, Ezzatollah (Author) ; Movahedi, Mojtaba (Supervisor) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    Severe plastic deformation (SPD) is an ideal approach to fabricate light-weight alloys, such as aluminum alloys, with ultrafine-grained (UFG) structure up to nano-scale. Thus, it is known as a process that boosts the strength of materials. This method is also adopted to enhance the specific strength of materials, which is essential in the transportation and aerospace industries. Because of limitations like load capacity, and as a result, low-size productions, it is not possible to use them in industries. A practical solution is to join the productions and fabricate them on bigger scales. Welding of SPDed materials by employing solid-state welding techniques is appropriate for joining UFG... 

    Reliability Analysis of MSE Wall

    , M.Sc. Thesis Sharif University of Technology Pahlavani, Helda (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    This study investigates the reliability analysis of mechanically stabilized earth (MSE) wall and takes into account the uncertainty associated in the mechanical properties of soil and geogrid, the magnetude of surcharge load and the soil-geosynthetic interface friction angle. In addition, the effect of number, length and place of the geogrid layers on the performance of this wall has been evaluated. The failure modes related to external stability, internal stability and horizontal displacement of the wall were considerd. In order to determine the probabilistic characteristics and the probability distribution function of soil and soil-geosynthetic interface friction angle, direct shear test... 

    Seismic Performance Evaluation of MSE Wall Reinforced with Geotextile

    , M.Sc. Thesis Sharif University of Technology Salehi, Sina (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    This study aims to evaluate the seismic behavior of geotextile-reinforced soil retaining walls by using incremental dynamic analysis and endurance time analysis methods. Five different wall models with variables of length and the modulus of elasticity of reinforcements have been constructed in the ABAQUS finite element software. In this study, the soil behavior and the interaction between the soil and reinforcement are modeled using a fully plastic linear elastic behavior model based on the Mohr-Coulomb yield criterion. Despite reinforced retaining walls' numerous benefits and extensive use, there is an obvious need for more precise design and a better knowledge of these structures' static... 

    Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol–gel immobilized cells

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 152 , 2017 , Pages 159-168 ; 09277765 (ISSN) Bagheri Lotfabad, T ; Ebadipour, N ; Roostaazad, R ; Partovi, M ; Bahmaei, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Rhamnolipids are the most common biosurfactants and P. aeruginosa strains are the most frequently studied microorganisms for the production of rhamnolipids. Eco-friendly advantages and promising applications of rhamnolipids in various industries are the major reasons for pursuing the economic production of these biosurfactants. This study shows that cultivation of P. aeruginosa MR01 in medium contained inexpensive soybean oil refinery wastes which exhibited similar levels and homologues of rhamnolipids. Mass spectrometry indicated that the Rha-C10-C10 and Rha-Rha-C10-C10 constitute the main rhamnolipids in different cultures of MR01 including one of oil carbon source analogues. Moreover,... 

    Tuning the wetting properties of SiO2-based nanofluids to create durable surfaces with special wettability for self-cleaning, anti-fouling, and oil-water separation

    , Article Industrial and Engineering Chemistry Research ; Volume 61, Issue 23 , 2022 , Pages 8005-8019 ; 08885885 (ISSN) Esmaeilzadeh, P ; Ghazanfari, M. H ; Molaei Dehkordi, A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Surfaces with special wettability have aroused lots of attention due to their broad applications in many fields. In this work, we systematically report selective and various fabrications of nanofluids based on readily available materials such as SiO2 nanoparticles and polydimethylsiloxane to create superhydrophobic, superoleophobic, superhydrophilic/superoleophobic, and underwater superoleophobic coatings. The efficiency of prepared coatings is investigated on mineral rock plates as porous substrates via the straightforward and cost-effective solution-immersion technique. The static water contact angle of 170°, effortless bouncing of water droplets, and self-cleaning property with a near... 

    Trunk dynamic stability assessment for individuals with and without nonspecific low back pain during repetitive movement

    , Article Human Factors ; 2020 Asgari, M ; Mokhtarinia, H. R ; Sanjari, M. A ; Kahrizi, S ; Philip, G. C ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    Objective: This study aimed to employ nonlinear dynamic approaches to assess trunk dynamic stability with speed, symmetry, and load during repetitive flexion-extension (FE) movements for individuals with and without nonspecific low back pain (NSLBP). Background: Repetitive trunk FE movement is a typical work-related LBP risk factor contingent on speed, symmetry, and load. Improper settings/adjustments of these control parameters could undermine the dynamic stability of the trunk, hence leading to low back injuries. The underlying stability mechanisms and associated control impairments during such dynamic movements remain elusive. Method: Thirty-eight male volunteers (19 healthy, 19 NSLBP)... 

    Trunk dynamic stability assessment for individuals with and without nonspecific low back pain during repetitive movement

    , Article Human Factors ; Volume 64, Issue 2 , 2022 , Pages 291-304 ; 00187208 (ISSN) Asgari, M ; Mokhtarinia, H. R ; Sanjari, M. A ; Kahrizi, S ; Philip, G. C ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    SAGE Publications Inc  2022
    Abstract
    Objective: This study aimed to employ nonlinear dynamic approaches to assess trunk dynamic stability with speed, symmetry, and load during repetitive flexion-extension (FE) movements for individuals with and without nonspecific low back pain (NSLBP). Background: Repetitive trunk FE movement is a typical work-related LBP risk factor contingent on speed, symmetry, and load. Improper settings/adjustments of these control parameters could undermine the dynamic stability of the trunk, hence leading to low back injuries. The underlying stability mechanisms and associated control impairments during such dynamic movements remain elusive. Method: Thirty-eight male volunteers (19 healthy, 19 NSLBP)... 

    Towards greater mechanical, thermal and chemical stability in solid-phase microextraction

    , Article TrAC - Trends in Analytical Chemistry ; Volume 34 , 2012 , Pages 126-138 ; 01659936 (ISSN) Bagheri, H ; Piri-Moghadam, H ; Naderi, M ; Sharif University of Technology
    Abstract
    Solid-phase microextraction (SPME) is a fast, solvent-free technique, which, since its introduction in the 1990s, has been increasingly applied to sample preparation in analytical chemistry. Conventional SPME fibers are fabricated by making a physical bond between the usual silica substrate and the polymeric coatings. However, some applications are limited, as the lifetime and the stability of conventional SPME fibers cannot meet the demands of analyzing relatively non-volatile compounds with more polar moieties. There have been attempts to analyze less volatile compounds by increasing the thermal, physical and chemical stability of the fibers. In this review, we present some new... 

    Toward multiscale modeling of wave propagation in arteries

    , Article Journal of Mechanics in Medicine and Biology ; Volume 16, Issue 3 , 2016 ; 02195194 (ISSN) Raustin, R ; Mohammadi, H ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd 
    Abstract
    In this study, we apply a novel numerical technique for modeling the propagation of mechanical wave in the human arteries using the multiscale method. We define a particle region characterized by molecular dynamics (MD) method which is surrounded by a continuous region characterized by a finite element (FE) method. The interface between the two models are defined so as to minimize spurious reflections at the interface. This is a preliminary work for the modeling of the mechanical stability of atherosclerosis plaques using multiscale method. The model offered has extensive application in cell mechanics  

    Toward higher extraction and enrichment factors via a double-reservoirs microfluidic device as a micro-extractive platform

    , Article Journal of Separation Science ; Volume 42, Issue 18 , 2019 , Pages 2985-2992 ; 16159306 (ISSN) Rezvani, O ; Baraazandeh, M ; Bagheri, H ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    In this study, firstly, a double-reservoir and switchable prototype of a micro-chip along with the respective holders were fabricated. A cyclic desorption process using microliter volume of organic solvent was adopted to prevent any outdoor contamination. As extractive phases, two identical sheets of electrospun polyamide/polypyrrole/titania nanofibers were synthesized using core–shell electro-spinning technique and utilized for determination of memantine in plasma samples. Field emission scanning electron microscopy images showed a high degree of porosity and homogeneity throughout the sheet structure. Also, energy dispersive X-ray analysis confirmed the presence of titania, while the... 

    Three-dimensional hybrid of iron–titanium mixed oxide/nitrogen-doped graphene on Ni foam as a superior electrocatalyst for oxygen evolution reaction

    , Article Journal of Colloid and Interface Science ; Volume 563 , 15 March , 2020 , Pages 241-251 Mousavi, D. S ; Asen, P ; Shahrokhian, S ; Irajizad, A ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    Growing demands for clean and renewable energy technologies have sparked broad research on the development of highly efficient and stable non-noble metal electrocatalysts for oxygen evolution reaction (OER). In this regard, in the present work a three-dimensional Fe2TiO5/nitrogen-doped graphene (denoted as 3D FTO/NG) hybrid electrocatalyst was synthesized via a facile in-situ process using a hydrothermal method. Structural characterization of the prepared nanocomposite is performed by various techniques e.g. field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) analysis, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy spectra (XPS),... 

    Surface/edge functionalized boron nitride quantum dots: Spectroscopic fingerprint of bandgap modification by chemical functionalization

    , Article Ceramics International ; Volume 46, Issue 1 , 2020 , Pages 978-985 Angizi, S ; Shayeganfar, F ; Hasanzadeh Azar, M ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Promising properties of boron nitride nanomaterials such as their chemical, thermal, and mechanical stability have made them suitable materials in a various range of applications. However, their low electrical conductivity and wide bandgap, particularly in the case of boron nitride quantum dots (BNQDs), have given rise to severe limitations. Efforts on bandgap engineering through doping and surface functionalization have gained little success due to their high thermodynamic stability and inertness. Herein, we present a novel approach to functionalize BNQDs by hydroxyl, methyl, and amine functional groups aiming to adjust the electronic structure. The successful exfoliation is demonstrated by... 

    Study the effect of viscoelastic matrix model on the stability of CNT/polymer composites by multiscale modeling

    , Article Polymer Composites ; Volume 30, Issue 11 , 2009 , Pages 1545-1551 ; 02728397 (ISSN) Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    In this article, a Molecular Structural Mechanics/Finite Element (MSM/FE) multiscale modeling of carbon nanotube/polymer composites with viscoelastic (VE) polymer matrix is introduced. The nanotube is modeled at the atomistic scale using structural molecular mechanics. The matrix deformation is analyzed by nonlinear finite element method considering VE behavior. The nanotube and matrix are assumed to be bonded by van der Waals interactions based on the Lennard-Jones potential at the interface. Using the MSM/FE multiscale model, we investigate the effect of carbon nanotube (CNT) on the improvement of mechanical stability of the nanocomposite. Also, the buckling behavior of these... 

    Stability analysis of carbon nanotubes under electric fields and compressive loading

    , Article Journal of Physics D: Applied Physics ; Volume 41, Issue 20 , 2008 ; 00223727 (ISSN) Sadeghi, M ; Ozmaian, M ; Naghdabadi, R ; Sharif University of Technology
    2008
    Abstract
    The mechanical stability of conductive, single-walled carbon nanotubes (SWCNTs) under applied electric field and compressive loading is investigated. The distribution of electric charges on the nanotube surface is determined by employing a method based on the classical electrostatic theory. For mechanical stability analysis, a hybrid atomistic-structural element is proposed, which takes into account the nonlinear features of the stability. Nonlinear stability analysis based on an iterative solution procedure is used to determine the buckling force. The coupling between electrical and mechanical models is accomplished by adding Coulomb interactions to the mechanical model. The results show... 

    Silane–based modified papers and their extractive phase roles in a microfluidic platform

    , Article Analytica Chimica Acta ; Volume 1128 , 2020 , Pages 31-41 Hashemi Hedeshi, M ; Rezvani, O ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Herein, some (modified) paper–based substrates were prepared and utilized as extractive phases in a microfluidic device and their extraction performances examined for analytes with different polarities. Reagents including hexadecyltrimethoxysilane (HDTMS), phenyltrimethoxysilane (PTES), (3-aminopropyl) triethoxysilane (APTES) and 3–(2,3–epoxypropoxy) propyltrimethoxysilane (EPPTMOS) were implemented for the modification process. Due to the induction of different silane functional groups, it was anticipated to have various interactions for the tested analytes. Eventually, the prepared paper sheets were used as extractive phases for solid–phase extraction within a microfluidic system. The... 

    Selective fabrication of robust and multifunctional super nonwetting surfaces by diverse modifications of zirconia-ceria nanocomposites

    , Article Langmuir ; Volume 38, Issue 30 , 2022 , Pages 9195-9209 ; 07437463 (ISSN) Esmaeilzadeh, P ; Zandi, A ; Ghazanfari, M. H ; Khezrnejad, A ; Fatemi, M ; Molaei Dehkordi, A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The creation of surfaces with various super nonwetting properties is an ongoing challenge. We report diverse modifications of novel synthesized zirconia-ceria nanocomposites by different low surface energy agents to fabricate nanofluids capable of regulating surface wettability of mineral substrates to achieve selective superhydrophobic, superoleophobic-superhydrophilic, and superamphiphobic conditions. Surfaces treated with these nanofluids offer self-cleaning properties and effortless rolling-off behavior with sliding angles ≤7° for several liquids with surface tensions between 26 and 72.1 mN/m. The superamphiphobic nanofluid coating imparts nonstick properties to a solid surface whereby... 

    Polyamide/titania hollow nanofibers prepared by core–shell electrospinning as a microextractive phase in a fabricated sandwiched format microfluidic device

    , Article Journal of Chromatography A ; Volume 1528 , 2017 , Pages 1-9 ; 00219673 (ISSN) Rezvani, O ; Hashemi Hedeshi, M ; Bagheri, H ; Sharif University of Technology
    Abstract
    In this study, a low–cost microfluidic device from polymethyl methacrylate was fabricated by laser engraving technique. The device is consisted of a central chip unit with an aligned microchannel. Both sides of the engraved microchannel were sandwiched by two synthesized sheets from polyamide/titania (PA/TiO2) hollow nanofibers as extractive phases. The inlet and outlet of the device were connected to the polyether ether ketone tubes, while a peristaltic pump was used to deliver both sample and desorbing solvent through the microchannel. The recorded scanning electron microscopy images from the surface of the synthesized PA/TiO2 nanofibers, exhibit a good degree of homogeneity and porosity... 

    Nickel vanadium sulfide grown on nickel copper phosphide dendrites/Cu fibers for fabrication of all-solid-state wire-type micro-supercapacitors

    , Article Chemical Engineering Journal ; Volume 392 , 15 July , 2020 Naderi, L ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Herein, we have successfully fabricated NiVS/NiCuP nanostructures on Cu wire as a fiber electrode for high performance FSMSCs applications. The 3D NiCuP dendritic film was firstly deposited on Cu wire through the electrodeposition method, which not only act as a scaffold for deposition of the electroactive materials (NiV-LDH and NiV-S), but also served as a micro-porous current collector, supplied extra capacitances. Then, NiV-LDH nanosheets grown on 3D NiCuP film were obtained using a hydrothermal method. The sulfidation of NiV-LDH is carried out through an ion-exchange reaction of OH– with S2– to obtain NiVS, which maintains an ultrathin and porous structure, improves the electrical... 

    Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances

    , Article Journal of Colloid and Interface Science ; Volume 542 , 2019 , Pages 325-338 ; 00219797 (ISSN) Naderi, L ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2019
    Abstract
    Wire-shaped micro-supercapacitors attracted extensive attentions in next-generation portable and wearable electronics, due to advantages of miniature size, lightweight and flexibility. Herein, NiMoO 4 nanorods supported on Ni film coated Cu wire are successfully fabricated thorough direct deposition of Ni film onto Cu wire as the conductive substrate, followed by growth of the NiMoO 4 nanorods on Ni film coated Cu wire substrate by means a hydrothermal annealing process. The prepared 3D, porous electrode demonstrates extremely high areal specific capacitance of 12.03F cm −2 at the current density of 4 mA cm −2 and retained capacitance of 8.23 F cm −2 at a much higher current density of 80... 

    Multi-porous Co3O4 nanoflakes @ sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors

    , Article Journal of Materials Chemistry A ; Volume 5, Issue 24 , 2017 , Pages 12569-12577 ; 20507488 (ISSN) Qorbani, M ; Chou, T. C ; Lee, Y. H ; Samireddi, S ; Naseri, N ; Ganguly, A ; Esfandiar, A ; Wang, C. H ; Chen, L. C ; Chen, K. H ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    The controlled growth of metal oxide nanostructures within hierarchically porous conductive carbon-based frameworks is critically important to achieving high volumetric performance and appropriate channel size for energy storage applications. Herein, we grow cobalt oxide (Co3O4) nanoflakes, using a sequential-electrodeposition process, into spherically porous sponge-like few-layer partially reduced graphene oxide (SrGO) synthesized by template-directed ordered assembly. Maximum specific/volumetric capacitances of 1112 F gCo3O4-1 (at 3.3 A gCo3O4-1), 178 F cm-3 (at 2.6 A cm-2), and 406 F gtotal-1 (at 1 A gtotal-1) and sensible rate capability (80% retention by increasing the charge/discharge...