Loading...
Search for: mechanical-engineering
0.011 seconds
Total 188 records

    Adaptive simulation of hysteresis using neuro-Madelung model

    , Article Journal of Intelligent Material Systems and Structures ; Volume 27, Issue 13 , 2016 , Pages 1713-1724 ; 1045389X (ISSN) Farrokh, M ; Shafiei Dizaji, M ; Sharif University of Technology
    SAGE Publications Ltd 
    Abstract
    Hysteretic phenomena have been observed in different branches of engineering sciences. Although each of them has its own characteristics, Madelung's rules are common among most of them. Based on Madelung's rules, we propose a general approach to the simulation of both the rate-independent and rate-dependent hystereses with either congruent or non-congruent loops. In this approach, a static function accommodates different properties of the hystereses. Using the learning capability of the neural networks, an adaptive general model for hysteresis is introduced according to the proposed approach and it is called the neuro-Madelung model. Using various hystereses from different areas of... 

    A method for matching response spectra of endurance time excitations via the Fourier transform

    , Article Earthquake Engineering and Engineering Vibration ; Volume 19, Issue 3 , July , 2020 , Pages 637-648 Mashayekhi, M ; Estekanchi, H. E ; Vafai, H ; Sharif University of Technology
    Institute of Engineering Mechanics (IEM)  2020
    Abstract
    The endurance time (ET) method is a dynamic analysis in which structures are subjected to intensifying excitations, also known as ET excitation functions (ETEF). The ET method is a tool for structural response prediction. The main advantage of the ET method over conventional approaches is its much lower demand for computational efforts. The concept of acceleration spectra is used in generating existing ETEFs. It is expected that ETEF acceleration spectra increase consistently with time and remain proportional to a target spectrum. Nonlinear unconstrained optimization is commonly used to generate ETEFs. Generating new ETEFs is a complicated time-consuming mathematical problem. If the target... 

    Indirect adaptive fuzzy sliding mode control of 3D inverted pendulum

    , Article 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation, KBEI 2017 ; Volume 2018-January , 2018 , Pages 0919-0924 ; 9781538626405 (ISBN) Nikzad Goltapeh, A ; Shokouhyan, M. R ; Motekallem, A ; Sharifi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, an indirect adaptive fuzzy sliding mode controller for a 3-dimensional inverted pendulum as a fully actuated MIMO system is developed. This inverted pendulum, has four degrees of freedom and equations of the system are nonlinear and non-minimum phase. Thus, control of this system is a challenging issue. Accordingly, in this work, general basis of sliding mode control method with reaching rules is expressed for this system, then the fuzzy control theory is combined, and modeling uncertainties of the system are estimated by universal fuzzy approximation theory. Controller parameters are updated by a defined adaptation law to decrease the tracking error of the inverted pendulum.... 

    On the existence of canards in a nonlinear fluid system manifesting oscillatory behaviour

    , Article International Journal of Non-Linear Mechanics ; Volume 98 , 2018 , Pages 58-63 ; 00207462 (ISSN) Fallah, H ; Lundberg, P ; Razvan, M. R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In an earlier study dealing with a nonlinear fluid oscillator governed by two autonomous ODEs, the solutions were found to display some aberrant characteristics adjacent to the boundaries of the oscillatory regime in parameter space. It was argued that this behaviour indicated the presence of canards. In the present study it is formally proved that this indeed is the case, and some numerical examples illustrating the phenomenon as well as its effects are presented. © 2017 Elsevier Ltd  

    Static and dynamic analysis of a clamp-clamp nano-beam under electrostatic actuation and detection considering intermolecular forces

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 10 , 2013 ; 9780791856390 (ISBN) Mojahedi, M ; Barari, A ; Firoozbakhsh, K ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Micro/nano gyroscopes which can measure angular rate or angle are types of merging gyroscope technology with MEMS/NEMS technology. They have extensively used in many fields of engineering, such as automotive, aerospace, robotics and consumer electronics. There are many studies of a variety of gyroscopes with various drive and detect methods and different resonator structures in last years. In case of electrostatically actuated and detected beam micro/nano-gyroscopes, DC voltages are applied in driving and sensing directions and AC voltage is utilized in driving direction in order to excite drive oscillation. The intermolecular surface forces are especially significant when the gyroscopes are... 

    A simplified model for the flow inside cascade impactor

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 7 A , November , 2013 ; 9780791856314 (ISBN) Mehr, S. M. N ; Sohrabi, S ; Falsafi, P ; Gorji, P ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    In this paper we developed a new mathematical model for the flow inside cascade impactors and via this simplified model, we determined the particle size distribution by a fast and low cost computational method. Using cascade impactors for determining the particle size distribution, one can use comprehensive CFD methods to fully simulate the particle traces. Although the results from those CFD analyses can be very accurate, usually that is not a time and cost efficient routine. In contrast, we showed that by using our proposed calculation we can estimate the particle size distribution very fast and yet with the slight error -comparing to the results from CFD method. Cascade impactors are... 

    Vibration and dynamic analysis of oil well drillstring considering coupled axial and torsional effects using cylindrical superelement

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 14 , November , 2013 ; 9780791856437 (ISBN) Ahmadian, M. T ; Ghorbani, Sh ; Firoozbakhsh, K ; Barari, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    In this paper axial and torsional vibrations of a drillstring are studied using cylindrical superelement. Drillstring vibration equation is derived by calculating kinetic and potential energy and work done by external forces on drillstring, and utilizing Hamilton's principle. The model is analyzed by implementing finite element technique with consideration drillstring weight, centrifugal force due to rotation of drillstring, axial force resulting from bit with the formation contact and torsional torque caused by the stick-slip phenomenon. To calculate the vibrational response of drillstring, a computational finite element scheme was developed. For a typical case of oil well drillstring, the... 

    Modeling and stability analysis of truncated high density lipoprotein (HDL) system using MARTINI coarse grain technique

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 3 A , November , 2013 ; 9780791856215 (ISBN) Damirchi, B ; Rouhollahi, A ; Sohrabi, S ; Mehr, S. M. N ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Lipoproteins are biochemical compounds containing both proteins and lipids. These particles carry chemicals like cholesterol and triglycerides that are not soluble in aqueous solutions. This paper presents modeling of lipoprotein system using coarse grain molecular dynamics technique and stability analysis of this system in a water solution like blood. A high density lipoprotein (HDL) that consists of two annular monomers is modeled. Also there are lipid bilayers located in center of the rings, so the whole HDL and lipid bilayers are called lipoprotein system. First, all atom model is provided and then coarse-grain model is obtained using MARTINI technique. Modeling of the system in all atom... 

    Modified multiscale finite volume method for two phase flow in porous media

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 7 A , 2013 ; 9780791856314 (ISBN) Saeidimanesh, M ; Eksiri, H ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Multiscale finite volume (MSFV) method have been developed and applied in various complicated physics. The most important advantage of MSFV method is its computational efficiency. In this paper we present a new set of boundary condition for calculation of basis and correction functions which leads to further reduction in computational time in problems with medium heterogeneity and therefore improves computational efficiency. In standard MSFV (sMSFV) method reduced boundary condition is used to determine the basis and correction functions which is based on local information, however in modified MSFV (mMSFV) method global information is used at initial time for constructing boundary condition... 

    Optimization of the angle of attack of delta-winglet vortex generators over a bank of elliptical-tubes heat exchanger

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 8 A , 2013 ; 9780791856345 (ISBN) Godazandeh, K ; Godazandeh, B ; Ansari, M. H ; Ashjaee, M ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    In order to reach a more efficient and compact heat exchanger, it is essential to optimize the design, having in mind the impact of different geometrical parameters. Many of the previously cited studies in the area of heat transfer enhancement using vortex generators were confined only to defined points in the possible design space. Thus, a multiobjective optimization study is particularly suitable in order to cover this space entirely. A CFD simulation along with Pareto method were used to simulate the air flow and heat transfer and optimize the design parameters. The angle of attack of a pair of delta-winglets mounted behind each tube is varied between β = -90° and ß = +90°. Three... 

    Oscillatory behavior of the nonlinear clamped-free beam microgyroscopes under electrostatic actuation and detection

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 10 , 2013 ; 9780791856390 (ISBN) Mojahedi, M ; Firoozbakhsh, K ; Ahmadian, M. T ; Barari, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Vibratory micromachined gyroscopes use suspending mechanical parts to measure rotation. They have no gyratory component that require bearings, and for this reason they can be easily miniaturized and batch production using micromachining methods. They operate based on the energy interchange between two modes of structural vibration. The objective of this paper is to study the oscillatory behavior of an electrostatically actuated vibrating microcantilever gyroscope with proof mass at its end. In the modelling, the effects of different nonlinearities, fringing field and base rotation are considered. The microgyroscope is subjected to coupled bending oscillations around the static deflection... 

    A novel approach for compensating the significance of tubule's architecture in urine concentrating mechanism of renal medulla

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 3 B , 2013 ; 9780791856222 (ISBN) Sohrabi, S ; Mehr, S. M. N ; Falsafi, P ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Many theories and mathematical simulations have been proposed concerning urine concentrating mechanism (UCM). The WKM and region approach are the two most valuable methods for compensating the effect of tubule's architecture in renal medulla. They both have tried to simulate tubule's confinement within a particular region mathematically in one spatial dimension. In this study, continuity, momentum and species transport equations along with standard expressions for transtubular solutes and water transports on tubule's membrane were solved numerically in three spatial dimensions which practically is the main significance of our novel approach. Model structure has been chosen as simple as... 

    System and method for analysis of involving factors in the demisting cyclone efficiency

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), San Diego, CA ; Volume 15 , November , 2013 ; 9780791856444 (ISBN) Najafabadi, M. M ; Ehteram, M. A ; Ahmadian, M. T ; Barari, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    In this study a system for real-time analysis of some involving factors in the efficiency of gas-liquid separators is developed based on the weighing method. An ultrasonic atomizer generates water drops in a size range of 1-10 μm with the same frequency during the test. A cyclone separator is selected and effect of the developing flow rate and shape of the mini-riser as a part of connecting assembly to the cyclone separator is investigated. Further an efficient electrostatic precipitator (ESP) with outcome of single-phase airflow is employed in the downstream of the cyclone to separate remaining droplets and produce the same pressure loss during the test. Circular, triangular, rectangular... 

    Ultrasonic-assisted cylindrical grinding of Alumina-zirconia ceramics

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 2 A , Volume 2 A , 2013 ; 9780791856185 (ISBN) Tawakoli, T ; Akbari, J ; Zahedi, A. M ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Due to its vast applications and stochastic nature, grinding has been the subject of investigations and modifications for decades. Applying ultrasonic vibration in grinding has been a successful innovation introducing benefits such as reduced forces and temperature, improved surface quality, and making higher removal rates possible. In this work a set-up is developed for utilizing ultrasonic vibrations in cylindrical grinding. This is done by rotating and simultaneously vibrating the workpiece material. The set-up is used for cylindrical grinding of Alumina-zirconia ceramic as a difficult-to-grind and widely used industrial ceramic. Optimized parameters for efficient grinding and surface... 

    Optimal sliding mode control of AFM tip vibration and position during manipulation of a nanoparticle

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009, Lake Buena Vista, FL ; Volume 12, Issue PART A , 2010 , Pages 205-214 ; 9780791843857 (ISBN) Babahosseini, H ; Khorsand, M ; Meghdari, A ; Alasty, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    This research regards to a two-dimensional lateral pushing nanomanipulation using Atomic Force Microscope (AFM). Yet a reliable control of the AFM tip position during the AFM-based manipulation process is a chief issue since the tip can jump over the target nanoparticle and then the process can fail. However, a detailed Modeling and understanding of the interaction forces on the AFM tip is important for prosperous manipulation control and a nanometer resolution tip positioning. In the proposed model, Lund-Grenoble (LuGre) dynamic friction model is used as friction force on the contact surface between the nanoparticle and the substrate. This model leads to a stick-slip behavior of the... 

    H∞ Robust control of continuous fluidized tea bed dryer

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009, Lake Buena Vista, FL ; Volume 10, Issue PART A , 2010 , Pages 321-327 ; 9780791843833 (ISBN) Moradl, H ; Hajikolaei, K. H ; Motamedi, M ; Vossoughi, G. R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    During drying processes, moisture control of food products, such as dried tea, is of great importance. Improving dryer control, results in consistent production and reduction of energy consumption. However, the dryer is a complex system associated with model uncertainties. In this paper, a realistic uncertain model of a fluidized tea bed dryer is considered. Moisture content and temperature of tea leaves (or other products) are controlled at desired values by manipulating tea leaves heating rate. Developing a code by Robust Control Toolbox of MATLAB and modeling uncertainties, a robust controller is designed based on ′-synthesis with DK-iteration algorithm. Results show that in the presence... 

    Design of pid controller for control of speed of the robotic fish modeled by Lighthill's large amplitude elongated body theory in linear path

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009, Lake Buena Vista, FL ; Volume 10, Issue PART A , 2010 , Pages 117-124 ; 9780791843833 (ISBN) Shahi, M ; Meghdari, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    Design of robotic fish based on hydrodynamics is presented and Lighthill's Large Amplitude Elongated Body Theory (LAEBT) is used for modeling of the robotic fish in linear path. A PID controller for control of speed in linear path is designed and simulations are presented which shows its effectiveness for speed control of the robotic fish. It has been shown that in perspective of used approximate LAEBT model, the used control law maintains kinematic parameters and therefore, the associated efficiency will be maintained  

    Dynamic pull-in instability of initially curved microbeams

    , Article ASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009, Lake Buena Vista, FL, 13 November 2009 through 19 November 2009 ; Volume 12, Issue PART A , 2010 , Pages 113-118 ; 9780791843857 (ISBN) Moghimi Zand, M ; Ahmadian, M. T ; Rashidian, B ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    In this study, dynamic pull-in instability and snap-through buckling of initially curved microbeams are investigated. The microbeams are actuated by suddenly applied electrostatic force. A finite element model is developed to discretize the governing equations and Newmark time discretization is employed to solve the discretized equations. The static pull-in behavior is investigated to validate the model. The results of the finite element model are compared with finite difference solutions and their convergence is examined. In addition, the influence of different parameters on dynamic pull-in instability and snap-through buckling is explored  

    Contact time study of microsystems actuated by ramp-input voltages

    , Article ASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009, Lake Buena Vista, FL, 13 November 2009 through 19 November 2009 ; Volume 12, Issue PART A , 2010 , Pages 105-112 ; 9780791843857 (ISBN) Moghimi Zand, M ; Rashidian, B ; Ahmadian, M. T ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    This paper presents a model to analyze contact phenomenon in microsystems, actuated by ramp voltages, which has applications in frequency sweeping. First-order shear deformation theory is used to model dynamical system using finite element method, while finite difference method is applied to model squeeze film damping. The model is validated by static pull-in results. The presented hybrid FEM-FDM model is utilized to compute values of contact time and dynamic behavior. Considering this model, effects of different geometrical and mechanical parameters on contact time are studied. The influence of imposing the additional reverse voltage on dynamic characteristics of the system is also... 

    Multidisciplinary optimization of a car component under NVH and weight constraints using RSM

    , Article 2009 ASME International Mechanical Engineering Congress and Exposition, IMECE2009, Lake Buena Vista, FL, 13 November 2009 through 19 November 2009 ; Volume 15 , 2010 , Pages 315-319 ; 9780791843888 (ISBN) Azadi, M ; Zahedi, F ; Azadi, S ; Moradi, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    One of the important challenges in the auto industry is to reduce the mass of the vehicle while meeting structural performance requirements for Crashworthiness, Noise, Vibration and Harshness (NVH) etc. In this paper, a multidisciplinary optimization (MDO) of a car back-bonnet is investigated by using trie Response Surface Method (RSM). Firstly, a car body is fully surface modeled in CATIA and meshed in HYPERMESH software. Then, modal analysis of the finite element model is performed by NASTRAN software to find natural frequencies. Frequency map of that component is extracted and compared with a reference map to detect defects. Design of Experiments (DOE) methodologies is used for a...