Loading...
Search for: mathematical-models
0.011 seconds
Total 1027 records

    Modeling the effects of hot-spot traffic load on the performance of wormhole-switched hypermeshes

    , Article Computers and Electrical Engineering ; Vol. 37, issue. 1 , 2011 , p. 1-23 ; ISSN: 00457906 Moraveji, R ; Sarbazi-Azad, H ; Nayebi, A ; Navi, K ; Sharif University of Technology
    Abstract
    Hypermesh is a promising network topology and is suitable for a range of network-based computing systems. Although there are few models reported for hypermeshes with uniform traffic pattern, no analytical model has been reported to deal with hot-spot traffic. Since many parallel applications exhibit non-uniform traffic patterns such as hot-spots, uniform traffic assumption is not always justifiable in practice. In this study, we propose a new analytical model to predict the mean message latency in wormhole-switched hypermeshes in the presence of hot-spot traffic. The proposed model can also calculate the mean latency under uniform traffic load when the hot-spot ratio is set to zero.... 

    Performance modeling of n-dimensional mesh networks

    , Article Performance Evaluation ; Vol. 67, issue. 12 , 2010 , p. 1304-1323 ; ISSN: 01665316 Rajabzadeh, P ; Sarbazi-Azad, H ; Zarandi, H.-R ; Khodaie, E ; Hashemi-Najafabadi, H ; Ould-Khaoua, M ; Sharif University of Technology
    Abstract
    Mesh-based interconnection networks are the most popular inter-processor communication infrastructures used in current parallel supercomputers. Although many analytical models of n-D torus interconnection networks have been reported in the literature over the last decade, few analytical models have been proposed for the 2-D mesh case (and not for the general n-D mesh network) using inaccurate approximations as they have not fully incorporated the asymmetry effects of the mesh topology, in order to reduce the model complexity. There has not been reported, to the best of our knowledge, a performance model that can deal with the n-D mesh network. To fill this gap, in this paper, we propose the... 

    Power-performance analysis of networks-on-chip with arbitrary buffer allocation schemes

    , Article IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ; Vol. 29, issue. 10 , 2010 , p. 1558-1571 ; ISSN: 02780070 Arjomand, M ; Sarbazi-Azad, H ; Sharif University of Technology
    Abstract
    End-to-end delay, throughput, energy consumption, and silicon area are the most important design metrics of networks-on-chip (NoCs). Although several analytical models have been previously proposed for predicting such metrics in NoCs, very few of them consider the effect of message waiting time in the buffers of network routers for predicting overall power consumptions and none of them consider structural heterogeneity of network routers. This paper introduces two inter-related analytical models to compute message latency and power consumption of NoCs with arbitrary topology, buffering structure, and routing algorithm. Buffer allocation scheme defines the buffering space for each individual... 

    variable control of chaos using PSO-based minimum entropy control

    , Article Communications in Nonlinear Science and Numerical Simulation ; Vol. 16, Issue. 6 , 2011 , pp. 2397-2404 ; ISSN: 10075704 Sadeghpour, M ; Salarieh, H ; Vossoughi, G ; Alasty, A ; Sharif University of Technology
    Abstract
    The minimum entropy (ME) control is a chaos control technique which causes chaotic behavior to vanish by stabilizing unstable periodic orbits of the system without using mathematical model of the system. In this technique some controller type, normally delayed feedback controller, with an adjustable parameter such as feedback gain is used. The adjustable parameter is determined such that the entropy of the system is minimized. Proposed in this paper is the PSO-based multi-variable ME control. In this technique two or more control parameters are adjusted concurrently either in a single or in multiple control inputs. Thus it is possible to use two or more feedback terms in the delayed feedback... 

    Stabilizing periodic orbits of chaotic systems using adaptive critic-based neurofuzzy controller

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009 ; Vol. 4, Issue. PART C , 2009 , pp. 1759-1767 ; ISBN: 9780791849019 Honarvar, M ; Vatankhah, R ; Salarieh, H ; Boroushaki, M ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper design and evaluation of an adaptive critic- based neurofuzzy controller for the stabilizing periodic orbits of chaotic systems has been presented in detail. The main superiority of the proposed controller over previous analogous fuzzy logic controller design approaches, e.g., genetic fuzzy logic controller, is its online tuning characteristic and remarkable reduced amount of computations used for parameter adaptation, which makes it desirable for real time applications. Considering the simplicity of this controller and its independence from the system model, this control method has the advantage of online learning and control, and can be applied to a large variety of systems.... 

    Permeability reduction of membranes during particulate suspension flow; analytical micro model of size exclusion mechanism

    , Article Journal of Membrane Science ; Vol. 435, issue , May , 2013 , p. 155-164 ; ISSN: 3767388 Bashtani, F ; Ayatollahi, S ; Habibi, A ; Masihi, M ; Sharif University of Technology
    Abstract
    Particle capture at porous media in cross-flow microfiltration is studied to investigate permeability reduction as a function of membrane pore size and particle size distribution. A new model in pore scale and its pertinent mathematical expressions, which consider pore and particle size distribution, are provided. Permeability reduction of the membrane because of size exclusion during particulate suspension flow was predicted using the developed model. It is assumed that the size exclusion is the dominant mechanism of particle retention causes pore blocking and permeability reduction in the porous media.The exact analytical solution of the stochastic model for size exclusion is used to... 

    The gas-oil gravity drainage model in a single matrix block: A new relationship between relative permeability and capillary pressure functions

    , Article Journal of Porous Media ; Vol. 14, issue. 8 , 2011 , p. 709-720 ; ISSN: 1091028X Dejam, M ; Ghazanfari, M. H ; Kamyab, M ; Masihi, M ; Sharif University of Technology
    Abstract
    This work concerns modeling of gas-oil gravity drainage for a single block of naturally fractured reservoirs. The nonlinearity induced from saturation-dependant capillary pressure and relative permeability functions makes a gravity drainage model difficult to analytically and numerically solve. Relating the capillary pressure and relative permeability functions is a potential method to overcome this problem. However, no attempt has been made in this regard. In this study a generalized one-dimensional form of gas-oil gravity drainage model in a single matrix block, presented in the literature, is considered. In contrast with commonly used forms of capillary pressure and relative permeability... 

    Iterative coupled experimental-numerical evaluation of dispersivity in fractured porous media using micromodel system

    , Article 73rd European Association of Geoscientists and Engineers Conference and Exhibition 2011: Unconventional Resources and the Role of Technology. Incorporating SPE EUROPEC 2011 ; Vol. 4, issue , 2011 , p. 2461-2466 Saidian, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Kianinejad, A ; Sharif University of Technology
    Abstract
    In this study a new iterative algorithm is developed to evaluate dispersivity in fracture and matrix, distinctly. The novelty of proposed algorithm is using mathematical model of solute transport in fractured porous media coupled with experimental data iteratively. A fractured glass micromodel has been designed to visualize the interaction between fracture and matrix during displacement of n-Decane by n-Octane at constant rate. The similarity between numerical and experimental model has been enhanced by reducing the assumptions which were applied in previous related studies. The iteration is performed on velocity components of solute transport and longitudinal as well as transversal... 

    Formulation of a nonlinear mathematical model to simulate accelerations of an AAMV in take-off and landing phases

    , Article Ships and Offshore Structures ; 2014 ; ISSN: 17445302 Amiri, M. M ; Dakhrabadi, M. T ; Seif, M. S ; Sharif University of Technology
    Abstract
    Aerodynamically alleviated marine vehicle (AAMV) is a high speed craft equipped with aerodynamic surfaces that operating in ground effect zone provides this craft with the ability to achieve much higher cruising speeds. Reducing the take-off mode of an AAMV is highly desirable. Additionally, it is seen where there is a considerable reserve thrust take-off can occur in the lower get-away speeds that shorten the take-off run and, therefore, is favourable. Accordingly, in this study an attempt has been made to develop a nonlinear mathematical model for an AAMV to simulate accelerations in take-off and landing phases, using semi-empirical equations mainly proposed for mono-hull high-speed craft,... 

    Numerical modeling of surface reaction kinetics in electrokinetically actuated microfluidic devices

    , Article Analytica Chimica Acta ; Vol. 838, issue , August , 2014 , pp. 64-75 ; ISSN: 00032670 Sadeghi, A ; Amini, Y ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    We outline a comprehensive numerical procedure for modeling of species transport and surface reaction kinetics in electrokinetically actuated microfluidic devices of rectangular cross section. Our results confirm the findings of previous simplified approaches that a concentration wave is created for sufficiently long microreactors. An analytical solution, developed for the wave propagation speed, shows that, when normalizing with the fluid mean velocity, it becomes a function of three parameters comprising the channel aspect ratio, the relative adsorption capacity, and the kinetic equilibrium constant. Our studies also reveal that the reactor geometry idealized as a slit, instead of a... 

    Prediction of the aqueous solubility of BaSO4 using pitzer ion interaction model and LSSVM algorithm

    , Article Fluid Phase Equilibria ; Vol. 374, issue , July , 2014 , p. 48-62 ; ISSN: 03783812 Safari, H ; Shokrollahi, A ; Jamialahmadi, M ; Ghazanfari, M. H ; Bahadori, A ; Zendehboudi, S ; Sharif University of Technology
    Abstract
    Deposition of barium sulfate (or BaSO4) has already been recognized as a devastating problem facing process industries and oilfield operations, mainly owing to its low solubility in aqueous solutions. Predicting and also preventing the overall damage caused by BaSO4 precipitation requires a profound knowledge of its solubility under different thermodynamic conditions. The main aim of this study is to develop a solubility prediction model based on a hybrid of least squares support vector nachines (LSSVM) and coupled simulated annealing (CSA) aiming to predict the solubility of barium sulfate over wide ranges of temperature, pressure and ionic compositions. Results indicate that predictions of... 

    The modeling of kinetics and catalyst deactivation in propane dehydrogenation over Pt-Sn/γ-Al2O3 in presence of water as an oxygenated additive

    , Article Petroleum Science and Technology ; Vol. 32, issue. 10 , Mar , 2014 , pp. 1139-1149 ; ISSN: 10916466 Barghi, B ; Fattahi, M ; Khorasheh, F ; Sharif University of Technology
    Abstract
    A reduction in catalyst's activity with time-on-stream and the formation of side products are two of the problems associated with catalytic propane dehydrogenation (PDH). Previous studies have indicated that the presence of small amounts of oxygenated additives such as water can reduce coke formation and enhance catalyst activity. The aim of the present work was to develop an appropriate kinetic model for PDH over a commercial Pt-Sn/γ-Al 2O3 catalyst in the presence of small amounts of water. Experimental data were obtained from a previous study where catalytic PDH was carried out in a bench scale reactor system at atmospheric pressure in the temperature range of 575-620°C in the presence of... 

    Hot rolling and direct cooling

    , Article Comprehensive Materials Processing ; Vol. 3 , 2014 , pp. 377-396 ; ISBN: 9780080965338 Serajzadeh, S ; Sharif University of Technology
    Abstract
    Knowledge of process parameters during and after hot rolling is a significant requirement in order to produce a material with the desired microstructures and mechanical properties. In continuous hot rolling mills, different stages may exist, including water descaling, rolling stands, interstand sections, and run-out table. In each of these sections, various thermal and/or mechanical conditions are applied on the rolling metal that would affect material response in successive stages. In other words, an integrated model should be employed in hot rolling operations to evaluate metal behavior and microstructural events at the same time. Therefore, the thermal-mechanical response as well as... 

    Dme direct synthesis from syngas in a large-scale three-phase slurry bubble column reactor: transient modeling

    , Article Chemical Engineering Communications ; Vol. 201, issue. 5 , Nov , 2014 , pp. 612-634 ; ISSN: 00986445 Papari, S ; Kazemeini, M ; Fattahi, M ; Fatahi, M ; Sharif University of Technology
    Abstract
    In this research, a new transient mathematical model based upon tanks-in-series configuration was developed to simulate the direct synthesis of dimethyl ether (DME) from syngas in a commercial-scale slurry bubble column reactor. A comparison between the simulation results and experimental data showed that the applied model might acceptably describe the behavior of the slurry reactor. Furthermore, simulation results in the heterogeneous bubble flow regime indicated that the proposed model with 10 tanks-in-series provided the optimum condition. Utilizing this transient model and considering catalyst deactivation, the effect of operating conditions on DME productivity and CO conversion were... 

    A bi-objective stochastic programming model for a centralized green supply chain with deteriorating products

    , Article International Journal of Production Economics ; Vol. 150 , 2014 , pp. 140-154 ; ISSN: 09255273 Sazvar, Z ; Mirzapour Al-E-Hashem, S. M. J ; Baboli, A ; Akbari Jokar, M. R ; Sharif University of Technology
    Abstract
    In recent years consumers and legislation have been pushing companies to design their activities in such a way as to reduce negative environmental impacts more and more. It is therefore important to examine the optimization of total supply chain costs and environmental impacts together. However, because of the recycling of deteriorated items, the environmental impacts of deteriorating items are more significant than those of non-deteriorating ones. The objective of this paper is to develop a stochastic mathematical model and to propose a new replenishment policy in a centralized supply chain for deteriorating items. In this model, we consider inventory and transportation costs, as well as... 

    On the influence of rolling path change on static recrystallization behavior of commercial purity aluminum

    , Article International Journal of Material Forming ; Vol. 7, issue. 1 , 2014 , pp. 53-63 ; ISSN: 19606206 Koohbor, B ; Sharif University of Technology
    Abstract
    An examination of the influence of rolling path change on the static recrystallization behavior of commercial purity aluminum was performed in the present work. Aluminum strips were cold rolled to a reduction of 50 % under various rolling sequences, i.e. single-pass, double-pass from one direction and with reverse directions, and were then annealed in 290 °C for different durations, while mechanical evaluations such as hardness and tensile tests were used to study the mechanical response of cold deformed and annealed samples. It was indicated that a variation in the recrystallization kinetics of the cold rolled aluminum strips takes place when the rolling path is altered from single to... 

    Lexicographic max-min approach for an integrated vendor-managed inventory problem

    , Article Knowledge-Based Systems ; Vol. 59 , 2014 , pp. 58-65 ; ISSN: 09507051 Pasandideh, S. H. R ; Niaki, S. T. A ; Niknamfar, A. H ; Sharif University of Technology
    Abstract
    Simultaneous reductions in inventory of raw materials, work-in-process, and finished items have recently become a major focus in supply chain management. Vendor-managed inventory is a well-known practice in supply chain collaborations, in which manufacturer manages inventory at the retailer and decides about the time and replenishment. In this paper, an integrated vendor-managed inventory model is presented for a two-level supply chain structured as a single capacitated manufacturer at the first level and multiple retailers at the second level. Manufacturer produces different products where demands are assumed decreasing functions of retail prices. In this chain, both the manufacturer and... 

    Comprehensive modeling and CFD simulation of absorption of CO2 and H2S by MEA solution in hollow fiber membrane reactors

    , Article AIChE Journal ; Vol. 60, issue. 2 , 2014 , pp. 657-672 ; ISSN: 00011541 Amrei, S. M. H. H ; Memardoost, S ; Dehkordi, A. M ; Sharif University of Technology
    Abstract
    A comprehensive mathematical model has been developed for the simulation of simultaneous chemical absorption of carbon dioxide and hydrogen sulfide by means of Monoethanolamine (MEA) aqueous solution in hollow fiber membrane reactors is described. In this regard, a perfect model considering the entrance regions of momentum, energy, and mass transfers was developed. Computational Fluid Dynamics (CFD) techniques were applied to solve governing equations, and the model predictions were validated against experimental data reported in the literature and excellent agreement was found. Effects of different disturbances on the dynamic behavior of the reactor were investigated. Moreover, effects of... 

    Designing a multi-echelon supply chain network: A car manufacturer case study

    , Article Journal of Intelligent and Fuzzy Systems ; Vol. 27, Issue. 6 , 2014 , pp. 2897-2914 ; ISSN 1875-8967 Khalaj, M. R ; Modarres, M ; Tavakkoli-Moghaddam, R ; Sharif University of Technology
    Abstract
    A multi-echelon supply chain design problem concerns the structure of the network and allocation of resources of the company to meet the demand forecast. This paper tries to design a multi-echelon supply chain network with five echelons including supplier, cross-dock, plant, distribution center and representative (customer). For this purpose, a mixed-integer mathematical model is developed to investigate the location of cross-docks, distribution centers, and also allocation between each pair of parties in order to minimize total cost of location and transportation. Due to the complexity of the model, a novel genetic algorithm is developed and applied on a real-world case study of Iran Khodro... 

    An artificial neural network meta-model for constrained simulation optimization

    , Article Journal of the Operational Research Society ; Vol. 65, issue. 8 , August , 2014 , pp. 1232-1244 ; ISSN: 01605682 Mohammad Nezhad, A ; Mahlooji, H ; Sharif University of Technology
    Abstract
    This paper presents artificial neural network (ANN) meta-models for expensive continuous simulation optimization (SO) with stochastic constraints. These meta-models are used within a sequential experimental design to approximate the objective function and the stochastic constraints. To capture the non-linear nature of the ANN, the SO problem is iteratively approximated via non-linear programming problems whose (near) optimal solutions obtain estimates of the global optima. Following the optimization step, a cutting plane-relaxation scheme is invoked to drop uninformative estimates of the global optima from the experimental design. This approximation is iterated until a terminating condition...