Loading...
Search for: ligands
0.011 seconds
Total 151 records

    Structural and theoretical exploring of noncovalent interactions in Chlorido- and Nitrito-rhenium(I) tricarbonyl complexes bearing 2,3-Butadiene-bis(2-nitrobenzylidene)hydrazine Ligand: Intramolecular Re–κ1-endo-ONO(lone pair)…π*(C[tbnd]O) interaction

    , Article Inorganica Chimica Acta ; Volume 540 , 2022 ; 00201693 (ISSN) Kia, R ; Heshmatnia, F ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Herein, we report the synthesis, characterization and combined structural and full computational analysis of noncovalent interactions in a new hydrazine ligand and its two chlorido- and endo-nitrito-rhenium(I) tricarbonyl complexes. The analysis of crystal structures has been accompanied by comprehensive computational studies of the noncovalent interactions utilizing the quantum theory of atoms in molecules (QTAIM), natural bond orbitals (NBO), independent gradient model (IGM), and electron localization function (ELF) to shed light on the nature of the interactions. On the other hand, comprehensive energy decomposition analysis (EDA) by extended transition state coupled with natural orbitals... 

    Distinct dynamics of migratory response to pd-1 and ctla-4 blockade reveals new mechanistic insights for potential t-cell reinvigoration following immune checkpoint blockade

    , Article Cells ; Volume 11, Issue 22 , 2022 ; 20734409 (ISSN) Safaeifard, F ; Goliaei, B ; Aref, A. R ; Foroughmand-Araabi, M. H ; Goliaei, S ; Lorch, J ; Jenkins, R. W ; Barbie, D. A ; Shariatpanahi, S. P ; Rüegg, C ; Sharif University of Technology
    MDPI  2022
    Abstract
    Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1), two clinically relevant targets for the immunotherapy of cancer, are negative regulators of T-cell activation and migration. Optimizing the therapeutic response to CTLA-4 and PD-1 blockade calls for a more comprehensive insight into the coordinated function of these immune regulators. Mathematical modeling can be used to elucidate nonlinear tumor–immune interactions and highlight the underlying mechanisms to tackle the problem. Here, we investigated and statistically characterized the dynamics of T-cell migration as a measure of the functional response to these pathways. We used a previously... 

    Synthesis, single crystal, electrochemical and study of fluorogenic dibenzodiaza-crown-appended with bis(ZnTPP) azo-tweezer and spectroscopic elucidation of photo-induced macrocycle-deformation-based chromotropism

    , Article Polyhedron ; Volume 227 , 2022 ; 02775387 (ISSN) Ghanbari, B ; Mahdavian, M ; Bakhshandeh, M ; Kubicki, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In the present research, a new tweezer T bearing azobenzene linker 1 was prepared, characterized by applying FT-IR spectroscopy, fluorescence spectroscopy, UV–visible spectroscopy, and elemental analysis 1H and 13C{1H} NMR. T crystals were obtained by reaction of 1 with ZnTPP in CHCl3/acetone. Under irradiation with a mercury lamp to achieve the trans-to-cis isomerization, a dramatic color change from violet to green in chloroform was observed. The X-ray crystallography of T revealed an observable macroring deformation of the ZnTPP for the trans isomer. We observed a deviation of 0.11 Å from planarity for the least-squares plane of ZnTPP owing to the axial coordination by the pyridine... 

    Modeling of an ultrasound system in targeted drug delivery to abdominal aortic aneurysm: a patient-specificin silico study based on ligand-receptor binding

    , Article IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control ; Volume 69, Issue 3 , 2022 , Pages 967-974 ; 08853010 (ISSN) Shamloo, A ; Boroumand, A ; Ebrahimi, S ; Kalantarnia, F ; Maleki, S ; Moradi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Targeted drug delivery methods have shown a significant impact on enhancing drug delivery efficiency and reducing drug side effects. While various stimuli have been used to promote the drug delivery process, applying ultrasound (US) waves to control drug particles through the human body, noninvasively, has drawn the scientist's attention. However, microcarriers delivery reaches the aneurysmal artery by US waves that exert volumetric forces on blood, and drug carriers, which can therefore affect blood flow patterns and movement pathways of drug carriers, have not yet been studied. In this study, we developed a 3-D patient-specific model of abdominal aortic aneurysm (AAA) to evaluate the... 

    Green metal-organic frameworks (MOFs) for biomedical applications

    , Article Microporous and Mesoporous Materials ; Volume 335 , 2022 ; 13871811 (ISSN) Rabiee, N ; Atarod, M ; Tavakolizadeh, M ; Asgari, S ; Rezaei, M ; Akhavan, O ; Pourjavadi, A ; Jouyandeh, M ; Lima, E. C ; Hamed Mashhadzadeh, A ; Ehsani, A ; Ahmadi, S ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Metal-organic frameworks (MOFs), known as highly ordered crystalline hybrid structures, are the products of coordination polymerization of transition metals and organic ligands. MOFs are best known for their extensive specific surface area, hierarchically porous and tailorable 1D, 2D, or 3D micro-and nanostructure, and acceptable biocompatibility. Because of the multiplicity of metallic and organic units used in MOFs synthesis, tailor-made MOFs can be synthesized to be served as building blocks of advanced biological materials and systems. Recently, synthesis of green MOFs has received much more attention for nanobiomedicine usage. We review herein synthesis and biomedical application of... 

    Targeted drug delivery of magnetic microbubble for abdominal aortic aneurysm: an in silico study

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 21, Issue 2 , 2022 , Pages 735-753 ; 16177959 (ISSN) Shamloo, A ; Ebrahimi, S ; Ghorbani, G ; Alishiri, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Targeted drug delivery (TDD) to abdominal aortic aneurysm (AAA) using a controlled and efficient approach has recently been a significant challenge. In this study, by using magnetic microbubbles (MMBs) under a magnetic field, we investigated the MMBs performance in TDD to AAA based on the amount of surface density of MMBs (SDMM) adhered to the AAA lumen. The results showed that among the types of MMBs studied in the presence of the magnetic field, micromarkers are the best type of microbubble with a −50 % increase in SDMM adhered to the critical area of AAA. The results show that applying a magnetic field causes the amount of SDMM adhered to the whole area of AAA to increase −1.54 times... 

    Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles

    , Article Biotechnology Reports ; Volume 34 , 2022 ; 2215017X (ISSN) Adel, M ; Zahmatkeshan, M ; Akbarzadeh, A ; Rabiee, N ; Ahmadi, S ; Keyhanvar, P ; Rezayat, S. M ; Seifalian, A. M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    This review highlights using nanotechnology in increasing the bioavailability of AP (Apigenin) to enhance its therapeutic efficacy in breast cancer treatment. Breast cancer is one of the most leading causes of cancer death in women both in developed and developing countries. According to several epidemiological and clinical trial studies that indicate progestin-stimulated breast cancer in post-menopausal women; it is necessary to determine compounds to suppress or attenuate the tumor-promoting effects of progestins in breast cells. For this purpose, using the natural anti-progestins, including AP compared with the chemical ones could be significantly effective due to the lack of toxicities... 

    Metal-Organic cubane cage with trimethylplatinum(IV) vertices

    , Article Inorganic Chemistry ; Volume 61, Issue 1 , 2022 , Pages 15-19 ; 00201669 (ISSN) Hendi, Z ; Jamali, S ; Mahmoudi, S ; Samouei, H ; Nayeri, S ; Chabok, S. M. J ; Jamshidi, Z ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Herein we describe the synthesis and characterization of the first platinum(IV) metal-organic cage [(Me3PtIV)8(byp)12](OTf)8 (2), in which the organometallic moieties trimethylplatinum(IV) (PtMe3) occupied the corners of a cubane structure and 4,4′-bipyridine ligands used as linkers. The first-principles density functional theory calculations showed that the highest occupied molecular orbitals were localized on the PtMe3 moieties, while the lowest unoccupied molecular orbitals were distributed on the organic linkers. © 2021 American Chemical Society  

    Green porous benzamide-like nanomembranes for hazardous cations detection, separation, and concentration adjustment

    , Article Journal of Hazardous Materials ; Volume 423 , 2022 ; 03043894 (ISSN) Rabiee, N ; Fatahi, Y ; Asadnia, M ; Daneshgar, H ; Kiani, M ; Ghadiri, A. M ; Atarod, M ; Mashhadzadeh, A. H ; Akhavan, O ; Bagherzadeh, M ; Lima, E. C ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Green biomaterials play a crucial role in the diagnosis and treatment of diseases as well as health-related problem-solving. Typically, biocompatibility, biodegradability, and mechanical strength are requirements centered on biomaterial engineering. However, in-hospital therapeutics require an elaborated synthesis of hybrid and complex nanomaterials capable of mimicking cellular behavior. Accumulation of hazardous cations like K+ in the inner and middle ear may permanently damage the ear system. We synthesized nanoplatforms based on Allium noeanum to take the first steps in developing biological porous nanomembranes for hazardous cation detection in biological media. The... 

    Drug delivery performance of nanocarriers based on adhesion and interaction for abdominal aortic aneurysm treatment

    , Article International Journal of Pharmaceutics ; Volume 594 , 2021 ; 03785173 (ISSN) Ebrahimi, S ; Vatani, P ; Amani, A ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Targeted drug delivery using nanocarriers (NCs) is one of the novel techniques that has recently been used to improve drug delivery to the Abdominal aortic aneurysm (AAA) disease. The purpose of this study is to evaluate the surface density of NCs (SDNC) adhered via ligand-receptor binding to the inner wall of AAA. For this purpose, fluid–structure interaction (FSI) analysis was first performed for the patient-specific and ideal AAA models. Then, by injecting NCs into the aortic artery, the values of SDNC adhered to and interacted with AAA wall were obtained. Two types of NCs, liposomes, and solid particles in four different diameters, were used to investigate the effect of the diameter and... 

    Effects of ligands on (de-)enhancement of plasmonic excitations of silver, gold and bimetallic nanoclusters: TD-DFT+TB calculations

    , Article Physical Chemistry Chemical Physics ; Volume 23, Issue 33 , 2021 , Pages 17929-17938 ; 14639076 (ISSN) Asadi Aghbolaghi, N ; Pototschnig, J ; Jamshidi, Z ; Visscher, L ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Metal nanoclusters can be synthesized in various sizes and shapes and are typically protected with ligands to stabilize them. These ligands can also be used to tune the plasmonic properties of the clusters as the absorption spectrum of a protected cluster can be significantly altered compared to the bare cluster. In this paper, we computationally investigate the influence of thiolate ligands on the plasmonic intensity for silver, gold and alloy clusters. Using time-dependent density functional theory with tight-binding approximations, TD-DFT+TB, we show that this level of theory can reproduce the broad experimental spectra of Au144(SR)60 and Ag53Au91(SR)60 (R = CH3) compounds with... 

    Efficient FAPbI3-PbS quantum dot graphene-based phototransistors

    , Article New Journal of Chemistry ; Volume 45, Issue 34 , 2021 , Pages 15285-15293 ; 11440546 (ISSN) Aynehband, S ; Mohammadi, M ; Poushimin, R ; Nunzi, J. M ; Simchi, A ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    The high mobility of charge carriers in graphene (G) together with the ease of processing and tunable optical properties of colloidal quantum dots (CQD) has provided high-performance hybrids for the next generation of phototransistors. In order to get a higher quality film of PbS QDs, understanding the effect of the ligand exchange method is critical. So, to improve the interdot electronic coupling, we propose a new conducting ligand to prepare a dense and self-assembled active layer of FAPbI3-PbS quantum dots on G/Si/SiO2substrates. Quantum dot (QD) nanocrystalline films were preparedviatwo different procedures: liquid phase ligand exchange (LPE) and solid phase ligand exchange (SPE). SPE... 

    Metal-Organic cubane cage with trimethylplatinum(Iv) vertices

    , Article Inorganic Chemistry ; 2021 ; 00201669 (ISSN) Hendi, Z ; Jamali, S ; Mahmoudi, S ; Samouei, H ; Nayeri, S ; Chabok, S. M. J ; Jamshidi, Z ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Herein we describe the synthesis and characterization of the first platinum(IV) metal-organic cage [(Me3PtIV)8(byp)12](OTf)8 (2), in which the organometallic moieties trimethylplatinum(IV) (PtMe3) occupied the corners of a cubane structure and 4,4′-bipyridine ligands used as linkers. The first-principles density functional theory calculations showed that the highest occupied molecular orbitals were localized on the PtMe3 moieties, while the lowest unoccupied molecular orbitals were distributed on the organic linkers. © 2021 American Chemical Society  

    Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: a review

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 4237-4256 Ahmadi, S ; Arab, Z ; Safarkhani, M ; Nasseri, B ; Rabiee, M ; Tahriri, M ; Webster, T. J ; Tayebi, L ; Rabiee, N ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    With the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting... 

    Roles of metal, ligand and post synthetic modification on metal organic frameworks to extend their hydrophobicity and applicability toward ultra–trace determination of priority organic pollutants

    , Article Analytica Chimica Acta ; Volume 1125 , 2020 , Pages 231-246 Javanmardi, H ; Abbasi, A ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Implementation of metal organic frameworks (MOFs) in the separation science has attracted many researchers attention. In this study, the role of metal, ligand, the reaction condition and modification on the extraction efficiency of some MOFs was investigated. Among the prevalent reported MOFs, some members of the MIL and MOF–5 families were chosen, and eleven MOF–based sorbents were prepared by changing the metal and ligand type, reaction condition, and/or functionality through post synthetic modification (PSM). MIL–101 and MIL–101–NH2 based structures were initially synthesized based on the chromium and iron salts. Also, three zinc–based structures including MOF–5, [NH2(CH3)2]2... 

    Non-covalent sulfoxide⋯(nitrosyl group) interactions involving coordinated nitrosyl in a Ru(ii) nitrosyl complex with an α-diimine ligand: Structural and computational studies

    , Article CrystEngComm ; Volume 22, Issue 44 , October , 2020 , Pages 7532-7537 Kia, R ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Investigation of the X-ray structure of the newly prepared [Ru(NO)(2,6isopPh2Aceq)Cl3] (2,6isopPh2Aceq = bis(2,6-diisopropylphenylimino)acenaphthenequinone) complex revealed for the first time the π-hole interaction involving the coordinated nitrosyl group with DMSO as the solvent of crystallization in the crystal lattice. Processing of CSD data showed only one reported structure. A significant feature of the structure is the presence of n → π∗, π → σ∗, and n → σ∗ interactions due to the coordinated nitrosyl and chloro groups and DMSO. © 2020 The Royal Society of Chemistry  

    Supramolecular assembly through intermolecular n → π∗ interactions through a coordinated perrhenate formed: Via superoxidation of Re(i) to Re(vii) in the formation of substituted Re(CO)3complexes bearing Diimine ligands

    , Article CrystEngComm ; Volume 22, Issue 39 , September , 2020 , Pages 6448-6452 Kia, R ; Taghavi, T ; Raithby, P. R ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    We report the structural, spectroscopic, and computational studies of two new Re(i) tricarbonyl complexes bearing 2,3,6,7-tetraphenyl-1,4,5,8-tetraazaphenanthrene (Ph4TAP) and 4,5-diazafluoren-9-one (dafone) having a coordinated perrhenate group obtained via in situ superoxidation of Re(i) to Re(vii); intramolecular and intermolecular n → π∗ interactions are dominant and stabilize the molecular geometry and crystal packing. This journal is © The Royal Society of Chemistry  

    Structural, non-covalent interaction, and natural bond orbital studies on bromido-tricarbonyl rhenium(I) complexes bearing alkyl-substituted 1,4-diazabutadiene (DAB) ligands

    , Article Crystals ; Volume 10, Issue 4 , April , 2020 Kia, R ; Kalaghchi, A ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    The synthesis, characterization, structural and computational studies of Re(I) tricarbonyl bromo complexes bearing alkyl-substituted 1,4-diazabutadiene ligands, [Re(CO)3(1,4-DAB)Br], where 1,4-DAB = N,N-bis(2,4-dimethylbenzene)-1,4-diazabutadiene,2,4-Me 2DAB (1); N,N-bis(2,4-dimethylbenzene)-2,3-dimethyl-1,4-diazabutadiene,2,4-Me 2DABMe (2); N,N-bis(2,4,6-trimethylbenzene)-1,4-diazabutadiene,2,4,6-Me 3DAB (3); and N,N-bis(2,6-diisopropylbenzene)-1,4-diazabutadiene,2,6-ipr 2DAB (4) are reported. The complexes were characterized by different spectroscopic methods such as FT-IR,1 H-NMR,13C-NMR, and elemental analyses and their solid-state structures were confirmed by X-ray diffraction. In each... 

    Development of a novel carboxamide-based off-on switch fluorescence sensor: Hg2+, Zn2+and Cd2+

    , Article New Journal of Chemistry ; Volume 44, Issue 27 , June , 2020 , Pages 11841-11852 Kiani, M ; Bagherzadeh, M ; Meghdadi, S ; Rabiee, N ; Abbasi, A ; Schenk Joß, K ; Tahriri, M ; Tayebi, L ; Webster, T. J ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Here, the carboxamide ligand N-(thiazole-2-yl) picolinamide (L) was synthesized in an ionic liquid tetrabutylammonium bromide (TBAB) as the benign reaction medium. The sensitivity of L towards different metal-ions was investigated, and a comprehensive, logical optical investigation was conducted for the IIB transition metal ions, Hg2+, Cd2+ and Zn2+, based on off-on switch sensor protocols. In the absence of these metal ions, L showed weak emission only, but fluorescence intensity increased considerably upon their addition to a sensitivity range of 10-6 M. This phenomenon was enhanced significantly in the presence of Zn2+ compared to other metal ions, likely due to the coordination of... 

    CRISPR-Cas, a robust gene-editing technology in the era of modern cancer immunotherapy

    , Article Cancer Cell International ; Volume 20, Issue 1 , September , 2020 Miri, S. M ; Tafsiri, E ; Cho, W. C. S ; Ghaemi, A ; Sharif University of Technology
    BioMed Central Ltd  2020
    Abstract
    Cancer immunotherapy has been emerged as a promising strategy for treatment of a broad spectrum of malignancies ranging from hematological to solid tumors. One of the principal approaches of cancer immunotherapy is transfer of natural or engineered tumor-specific T-cells into patients, a so called "adoptive cell transfer", or ACT, process. Construction of allogeneic T-cells is dependent on the employment of a gene-editing tool to modify donor-extracted T-cells and prepare them to specifically act against tumor cells with enhanced function and durability and least side-effects. In this context, CRISPR technology can be used to produce universal T-cells, equipped with recombinant T cell...