Loading...
Search for: initial-concentrations
0.006 seconds
Total 32 records

    Uranium(VI) sorption behavior onto amberlite CG-400 anion exchange resin: Effects of pH, contact time, temperature and presence of phosphate

    , Article Annals of Nuclear Energy ; Volume 48 , October , 2012 , Pages 21-24 ; 03064549 (ISSN) Semnani, F ; Asadi, Z ; Samadfam, M ; Sepehrian, H ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this paper, uranium sorption onto amberlite CG-400 anion exchange resin in the presence of phosphate anions was studied. The effect of contact time between the sorbent and aqueous solution, pH, initial concentration of uranium and temperature were also investigated. Kinetic studies show that uranium sorption onto amberlite CG-400 resin in the presence of phosphate is a fast process and follows pesudo-second-order kinetics. It was also found that the pH value and the presence of phosphate play very important roles in the uranium sorption onto CG-400 resin. Optimum pH for uranium sorption in the presence of phosphate anions was about 3.5. The experimental sorption isotherm is successfully... 

    Theoretical study of diffusional release of a dispersed solute from a hollow cylindrical polymeric matrix

    , Article Scientia Iranica ; Volume 28, Issue 3 , 2021 , Pages 1428-1435 ; 10263098 (ISSN) Jooybar, E ; Tajsoleiman, T ; Abdekhodaie, M. J ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    The present study proposes an exact solution for the release kinetic of a solute from inside a hollow cylindrical polymeric matrix into an infinite medium when the initial concentration of the solute (A) is greater than the solubility limit (Cs). A combination of analytical and numerical methods was used to calculate the solute concentration profile and the release rate. The model was developed for two different conditions including: (1) The release medium was flowing through the hollow cylinder in which the boundary layer may be neglected, and (2) The release medium inside the hollow cylinder was stagnant where the boundary layer needed to be considered. The results indicated that the... 

    Theoretical and experimental investigations of the inverse emulsion polymerization of acrylamide

    , Article Journal of Applied Polymer Science ; Volume 132, Issue 22 , February , 2015 ; 00218995 (ISSN) Abdi, A ; Shahrokhi, M ; Ahmad Ramazani, S. A ; Vafa, E ; Sharif University of Technology
    John Wiley and Sons Inc  2015
    Abstract
    In this study, the inverse emulsion polymerization modeling of polyacrylamide with population balance equations (PBEs) was performed. The PBEs were derived on the basis of the zero-one kinetic model. The effects of the surfactant steric barrier and surfactant reaction with radicals, including monomeric radicals, on the radical entry rate into the particle were taken into account. In the modified model, the coagulation phenomenon was included through consideration of the effects of forces not included in the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory; these include hydration and steric forces in addition to DLVO forces. The effects of the surfactant and initiator concentrations on... 

    Synthesis of poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite for removal of lead contaminant from aqueous media

    , Article International Journal of Environmental Science and Technology ; Volume 13, Issue 10 , 2016 , Pages 2437-2448 ; 17351472 (ISSN) Pourjavadi, A ; Abedin Moghanaki, A ; Hosseini, S. H ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2016
    Abstract
    Poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite was synthesized via radical polymerization of methyl acrylate onto modified magnetic nanoparticles followed by the functionalization of the methyl ester groups with poly(amidoamine) dendrimer. The resulting poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite was then characterized by infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, scanning electron microscope and X-ray diffraction analysis. Its application as an adsorbent for the removal of Pb(II) ions was studied. The removal capability of the adsorbent was investigated in different pH values, contact time (kinetics) and... 

    Synthesis and characterization of bagasse poly(methyl methacrylate) graft copolymer

    , Article Macromolecular Symposia ; Volume 274, Issue 1 , 2008 , Pages 49-54 ; 10221360 (ISSN) Sarvi, I ; Pourjavadi, A ; Noei Aghaei, M. A ; Sharif University of Technology
    2008
    Abstract
    Graft copolymerization of methyl methacrylate (MMA) was carried out on bagasse fibers in an aqueous medium using eerie ammonium nitrate (CAN) as initiator under a neutral atmosphere. In order to obtain the optimum condition for graft copolymerization, the effects of initiator concentration, temperature, time of reaction, and monomer concentration were studied. The maximum grafting percent was found to be 122%. The bagasse grafted poly(methyl methacrylate) was characterized by FTIR and its thermal behavior was characterized by TGA. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA  

    Studies on the recovery of uranium from nuclear industrial effluent using nanoporous silica adsorbent

    , Article International Journal of Environmental Science and Technology ; Volume 9, Issue 4 , October , 2012 , Pages 629-636 ; 17351472 (ISSN) Sepehrian, H ; Samadfam, M ; Asadi, Z ; Sharif University of Technology
    Springer  2012
    Abstract
    In this paper, the sorption of uranium onto nanoporous silica adsorbent in the presence of nitrate, sulfate, chloride, fluoride and phosphate was studied. The effect of contact time between the nanoporous sorbent and aqueous solution, pH and initial concentration of uranium was also investigated. Uranium sorption onto nanoporous silica adsorbent is a very fast process as sorption rate increases with pH increment. Optimum pH for uranium sorption was 4-8. Experimental sorption isotherm is successfully described by Langmuir and Freundlich models. The results obtained by batch experiments showed that the presence of high concentration of nitrate, sulfate, chloride and phosphate anions alone had... 

    Statistical analysis for enzymatic decolorization of acid orange 7 by Coprinus cinereus peroxidase

    , Article International Biodeterioration and Biodegradation ; Volume 64, Issue 3 , 2010 , Pages 245-252 ; 09648305 (ISSN) Yousefi, V ; Kariminia, H. R ; Sharif University of Technology
    2010
    Abstract
    Enzymatic decolorization of the monoazo dye, acid orange 7 (AO7) by the fungal peroxidase from Coprinus cinereus NBRC 30628 is a complex system, which is greatly affected by temperature, pH, enzyme activity and the concentrations of H2O2 and dye concentration. The study of these factors and investigating the combined interactions between them by applying one-factor-at-a-time (OFAT) method and two other statistical methods including 2-factorial method and response surface methodology (RSM) were aimed in this work. Through OFAT analysis the optimized conditions were a temperature of 25 °C, pH 9.0 with H2O2 concentration of about 3.9 mM and AO7 concentration of 40 mg/l. A complete... 

    Simulation and experimental evaluation of initiator and surfactant concentrations and temperature effects on styrene conversion and polymer particle size distribution in batch emulsion polymerization

    , Article Iranian Polymer Journal (English Edition) ; Volume 19, Issue 8 , Aug , 2010 , Pages 599-614 ; 10261265 (ISSN) Abedini, H ; Shahrokhi, M ; Sharif University of Technology
    Abstract
    Effects of initiator and surfactant concentrations and temperature on styrene conversion and polymer particle size distribution (PSD) in a batch emulsion polymerization are investigated through simulation and experimental studies. The detailed model based on population balance (zero-one model), accounting for nucleation, growth and coagulation phenomena has been used for prediction of particle size distribution. In checking the effect of initiator concentration on final PSD, it was noticed that when critical micelle concentration (CMC) is kept constant, the model cannot predict PSD very well. Thus, a correlation for calculating critical micelle concentration has been proposed and... 

    Removal of zirconium from aqueous solution by Aspergillus niger

    , Article Scientia Iranica ; Vol. 21, Issue. 3 , 2014 , pp. 772-780 ; ISSN: 10263098 Kalantari, H ; Yaghmaei, S ; Roostaazad, R ; Mohammad-Beigi, H ; Sharif University of Technology
    Abstract
    Removal of zirconium from its dilute aqueous solution using Aspergillus niger as a dried and living biomass was investigated. Through that, the effect of some operational parameters on biosorption, including pH, temperature, contact time, initial concentration of zirconium and dose of biomass, were studied. Based on the results, it was concluded that the uptake of zirconium by both dried and living biomasses is pH dependent, and maximum uptake was observed in pH = 3.1 for both biomasses. The maximum uptake capacity of the living biomass was obtained at 30°C. However, the biosorption of zirconium by dried biomass was not affected by temperature. The maximum uptake capacity for living and... 

    Removal of humic acid from aqueous solution using photocatalytic reaction on perlite granules covered by nano TiO2 particles

    , Article Journal of Molecular Liquids ; Volume 242 , 2017 , Pages 357-363 ; 01677322 (ISSN) Joolaei, H ; Vossoughi, M ; Rashidi Mehr Abadi, A ; Heravi, A ; Sharif University of Technology
    Abstract
    Humic acid (HA) constitutes a large portion of natural organic matter (NOM), and is the main precursor of toxic and cancerogenic Trihalomethanes compounds, formed during chlorination of drinking water. Therefore, it is essential that the humic acid be eliminated from water before treating it. The present study aims to investigate the photocatalytic degradation of humic acid (HA) using TiO2 nanoparticles immobilized on perlite granules (TIP), irradiated by UV light in a photoreactor. Samples of coated perlites were prepared by a dip coating method using a commercial powder of TiO2. Characteristics of the prepared samples were evaluated by X-ray and scanning electron microscope techniques.... 

    Removal of chromium from aqueous solution using polyaniline - Poly ethylene glycol composite

    , Article Journal of Hazardous Materials ; Volume 184, Issue 1-3 , December , 2010 , Pages 248-254 ; 03043894 (ISSN) Riahi Samani, M ; Borghei, S. M ; Olad, A ; Chaichi, M. J ; Sharif University of Technology
    2010
    Abstract
    The adsorption of chromium compounds from solutions by a composite of polyaniline/poly ethylene glycol (PANi/PEG) was investigated in this study. Experiments were conducted in batch mode under various operational conditions including agitation time, solution pH, PANi/PEG dose and initial concentration of chromium salts. Results showed that concentration of PEG at synthesizing stage has a significant effect on the capacity of produced composite for removal of chromium. Morphologically, PANi/PEG composite is closely dependent on the concentration of PEG. Maximum removal of hexavalent chromium was experienced when 2. g/L of PEG was used in synthesis of PANi/PEG. Removal of hexavalent chromium... 

    Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase

    , Article Journal of Hazardous Materials ; Volume 209-210 , 2012 , Pages 199-203 ; 03043894 (ISSN) Forootanfar, H ; Movahednia, M. M ; Yaghmaei, S ; Tabatabaei Sameni, M ; Rastegar, H ; Sadighi, A ; Faramarzi, M. A ; Sharif University of Technology
    2012
    Abstract
    The ability of Paraconiothyrium variabile, a laccase producing ascomycete recently isolated from soil, was studied to eliminate chlorophenol derivatives in submerged culture medium. Among the tested compounds, ρ-chlorophenol (ρ-CP) and pentachlorophenol (PCP) were found to have minimum and maximum toxic effects, respectively, on the growth of the microorganism and at the same time high and low bioelimination percentages. The fungal strain was able to remove 86% of ρ-CP (with initial concentration of 40mgl -1) and 56% of 2,4-dichlorophenol (2,4-DCP; with same concentration as ρ-CP) after 9 days of incubation while no elimination was observed in the presence of 2,4,6-trichlorophenol... 

    Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsuta

    , Article Bioresource Technology ; Volume 306 , 2020 Sadeghzadeh, S ; Ghobadi Nejad, Z ; Ghasemi, S ; Khafaji, M ; Borghei, S. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Enzymatic removal of Bisphenol A (BPA), acknowledged as an environmentally friendly approach, is a promising method to deal with hard degradable contaminants. However, the application of “enzymatic treatment” has been limited due to lower operational stability and practical difficulties associated with recovery and recycling. Enzyme immobilization is an innovative approach which circumvents these drawbacks. In this study, laccase from Trametes hirsuta was used for BPA removal. Amino-functionalized magnetic Fe3O4 nanoparticles were synthesized via the co-precipitation method followed by surface modification with (3-aminopropyl)trimethoxysilane (APTMS). The as-prepared nanoparticles were... 

    Reductive leaching of indium from the neutral leaching residue using oxalic acid in sulfuric acid solution

    , Article International Journal of Minerals, Metallurgy and Materials ; Volume 28, Issue 3 , 2021 , Pages 373-379 ; 16744799 (ISSN) Maddah, F ; Alitabar, M ; Yoozbashizadeh, H ; Sharif University of Technology
    University of Science and Technology Beijing  2021
    Abstract
    The present study evaluates the reductive leaching of indium from indium-bearing zinc ferrite using oxalic acid as a reducer in sulfuric acid solution. The effect of main factors affecting the process rate, including the oxalic-acid-to-sulfuric-acid ratio, stirring rate, grain size, temperature, and the initial concentration of synergic acid, was precisely evaluated. The results confirmed the acceptable efficiency of dissolving indium in the presence of oxalic acid. The shrinking-core model with a chemical-reaction-controlled step can correctly describe the kinetics of indium dissolution. On the basis of an apparent activation energy of 44.55 kJ/mol and a reaction order with respect to the... 

    Photoenhanced degradation of methylene blue on cosputtered M:TiO 2 (M = Au, Ag, Cu) nanocomposite systems: A comparative study

    , Article Journal of Physical Chemistry C ; Volume 114, Issue 33 , 2010 , Pages 13955-13961 ; 19327447 (ISSN) Sangpour, P ; Hashemi, F ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    Titania thin film system containing noble metallic nanoparticles such as Au, Ag, and Cu have been prepared by utilizing radio frequency reactive magnetron cosputtering method. The structural and morphological properties of the thin films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). Surface chemical composition of the films was determined by X-ray photoelectron spectroscopy (XPS). Optical properties of the TiO 2 annealed films containing Au, Ag, and Cu metallic nanoparticles were investigated by UV-visible spectrophotometry showing surface plasmon resonance of the metals. The photocatalytic activity of all synthesized samples annealed at 600 °C in an Ar +... 

    Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor

    , Article Chemical Engineering Journal ; Volume 146, Issue 1 , 2009 , Pages 79-85 ; 13858947 (ISSN) Faramarzpour, M ; Vossoughi, M ; Borghei, M ; Sharif University of Technology
    2009
    Abstract
    In this research, an attempt was made to investigate the potential of nanophotocatalysts for treatment of hazardous wastewater streams. Titanium dioxide nanoparticles (as photocatalyst) were immobilized on a porous and low-density support called "perlite" using a very simple and inexpensive method. TiO2-coated perlite granules were used in a "Floating-bed photoreactor" to study the photocatalytic purification process of a typical wastewater polluted by furfural. The effects of initial concentration, catalyst mass/solution volume ratio, oxidant molar flow, residence time, and light intensity on process removal efficiency, and kinetics of the reactions were studied. SEM analyses showed a... 

    Photocatalytic decomposition of direct red 16 and kinetics analysis in a conic body packed bed reactor with nanostructure titania coated Raschig rings

    , Article Chemical Engineering Journal ; Volume 151, Issue 1-3 , 2009 , Pages 295-301 ; 13858947 (ISSN) Saien, J ; Asgari, M ; Soleymani, A. R ; Taghavinia, N ; Sharif University of Technology
    2009
    Abstract
    A conic body packed bed reactor, internally irradiated with a UV-C lamp and equipped with circulating upflow stream was employed to investigate the decomposition of a widely used azo dye, direct red 16, in water. The synthesized nanostructure TiO 2 photocatalyst particles were immobilized on the surface of transparent Raschig ring packings. Solutions with initial concentration of 30 mg L -1 of dye, within the range of typical concentration in textile waste waters, were treated under the mild operating conditions of natural pH of 6.75 and temperature of 25 °C. Investigations on the active species showed that hydroxyl radicals play the major role in the process, providing a perfect degradation... 

    Magnetic polyresorcinol@CoFe2O4@MnS nanoparticles for adsorption of Pb(II), Ag(I), Cr(VI) and bacteria from water solution

    , Article Polymer Bulletin ; Volume 77, Issue 4 , 2020 , Pages 1893-1911 Kaveh, R ; Alijani, H ; Beyki, M. H ; Sharif University of Technology
    Springer  2020
    Abstract
    This study devoted to developing an efficient adsorbent with the excellent adsorption performance of heavy metals and bacteria capturing. Polyresorcinol@CoFe2O4 was synthesized by one-step hydrothermal reaction followed with doping MnS nanoparticles. The composite was characterized with SEM,TEM, BET, EDX, XRD, zeta potential measurement and Raman spectroscopy. Optimization of effective parameters on heavy metal adsorption, i.e., pH, contact time and adsorbent dosage, was performed with response surface methodology using Box–Behnken design. The sorbent showed good performance for Pb(II), Ag(I) and Cr(VI) removal with convenient magnetic separation operation with an adsorption capacity of... 

    Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin

    , Article Annals of Nuclear Energy ; Volume 39, Issue 1 , January , 2012 , Pages 42-48 ; 03064549 (ISSN) Rahmati, A ; Ghaemi, A ; Samadfam, M ; Sharif University of Technology
    Abstract
    Thermodynamic and kinetic studies have been carried out on the adsorption of uranium(VI) by Amberlite IRA-910 resin. The adsorption process has been investigated as a function of adsorbate concentration, solution acidity, contact time, adsorbent dosage, and temperature. The experiments were preformed in batch mode, where uranium initial concentration on the solution samples were 185.5, 277.6 and 456.8 (mg/lit), sulfuric acid concentration range was 0.02-9 (mol/lit) and sorbent dosages were 0.2, 0.3 and 0.5 g. Equilibrium isotherm data were analyzed using Freundlich and Dubinin-Radushkevich isotherm models. The results showed that the adsorption process was well described by Freundlich... 

    Idle time and gelation behavior in gelcasting process of PSZ in acrylamide system

    , Article Ceramic Transactions, 31 May 2009 through 5 June 2009 ; Volume 212 , JUL , 2010 , Pages 105-113 ; 10421122 (ISSN) ; 9780470876466 (ISBN) Sahraei Khanghah, N ; Faghihi Sani, M. A ; Sharif University of Technology
    2010
    Abstract
    Gelcasting is a novel forming method in fabricating complex three dimensional ceramic parts, and has many parameters and characteristics required to be specified. Up to now, few articles have been published on determination of the idle time of gelation precisely. In this work the chemorheology of gelation in aqueous solution of acrylamide and N, N′ methylenebisacrylamide monomer, and zirconia (PSZ) suspensions of this solution was investigated. As the viscosity of gel system increases abruptly in gelation point, idle time can be determined precisely by measurement of viscosity against time. Idle time can also be determined through temperature measurement against time since the reaction of...