Loading...
Search for: hierarchical-structures
0.007 seconds
Total 37 records

    Flexible polymeric tail for micro robot drag reduction bioinspired by the nature microorganisms

    , Article Physics of Fluids ; Volume 34, Issue 11 , 2022 ; 10706631 (ISSN) Heyat Davoudian, S ; Javadi, K ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    In nature, most microorganisms have flexible micro/nanostructure tails, which help them create propulsion, reduce drag, or search for food. Previous studies investigated these flexible structures mostly from the propulsion creation perspective. However, the drag reduction and the underlying physical mechanisms of such tails are less known. This scientific gap is more significant when multi-polymeric/hierarchical structures are used. To fill the gap, we use the dissipative particle dynamics (DPD) method as a powerful fluid-polymer interaction technique to study the flexible tails' influences on drag reduction. Note that the flow regime for these microorganisms is in the range of laminar low... 

    Tunable microwave absorption features in bi-layer absorber based on mesoporous CuS micro-particle with 3D hierarchical structure and nanosphere like NiCo2O4

    , Article Ceramics International ; Volume 48, Issue 7 , 2022 , Pages 9146-9156 ; 02728842 (ISSN) Zhang, Y ; Dai, F ; Mouldi, A ; Bouallegue, B ; Akhtar, M. N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    There has been a growing demand for materials with superior absorption capabilities, such as strong absorbing capacity, thin thickness, and light weight, to solve challenges related to EM radiation pollution. While the majority of the research is focused on optimizing material compositions, component microstructure and absorber structure are also critical factors for improving microwave absorption performance. In this research, we show how the microstructure of components and absorber design may increase dissipation features. Solvothermal and hydrothermal methods were utilized for synthesizing mesoporous CuS micro-particles with a 3D hierarchical structure as a dielectric component and... 

    Graphic: Graph-based hierarchical clustering for single-molecule localization microscopy

    , Article 18th IEEE International Symposium on Biomedical Imaging, ISBI 2021, 13 April 2021 through 16 April 2021 ; Volume 2021-April , 2021 , Pages 1892-1896 ; 19457928 (ISSN); 9781665412469 (ISBN) Pourya, M ; Aziznejad, S ; Unser, M ; Sage, D ; Sharif University of Technology
    IEEE Computer Society  2021
    Abstract
    We propose a novel method for the clustering of point-cloud data that originate from single-molecule localization microscopy (SMLM). Our scheme has the ability to infer a hierarchical structure from the data. It takes a particular relevance when quantitatively analyzing the biological particles of interest at different scales. It assumes a prior neither on the shape of particles nor on the background noise. Our multiscale clustering pipeline is built upon graph theory. At each scale, we first construct a weighted graph that represents the SMLM data. Next, we find clusters using spectral clustering. We then use the output of this clustering algorithm to build the graph in the next scale; in... 

    Detection of Apnea Bradycardia from ECG Signals of Preterm Infants Using Layered Hidden Markov Model

    , Article Annals of Biomedical Engineering ; Volume 49, Issue 9 , 2021 , Pages 2159-2169 ; 00906964 (ISSN) Sadoughi, A ; Shamsollahi, M. B ; Fatemizadeh, E ; Beuchée, A ; Hernández, A. I ; Montazeri Ghahjaverestan, N ; Sharif University of Technology
    Springer  2021
    Abstract
    Apnea-bradycardia (AB) is a common complication in prematurely born infants, which is associated with reduced survival and neurodevelopmental outcomes. Thus, early detection or predication of AB episodes is critical for initiating preventive interventions. To develop automatic real-time operating systems for early detection of AB, recent advances in signal processing can be employed. Hidden Markov Models (HMM) are probabilistic models with the ability of learning different dynamics of the real time-series such as clinical recordings. In this study, a hierarchy of HMMs named as layered HMM was presented to detect AB episodes from pre-processed single-channel Electrocardiography (ECG). For... 

    Highly concurrent latency-tolerant register files for GPUs

    , Article ACM Transactions on Computer Systems ; Volume 37, Issue 1-4 , 2021 ; 07342071 (ISSN) Sadrosadati, M ; Mirhosseini, A ; Hajiabadi, A ; Ehsani, S. B ; Falahati, H ; Sarbazi Azad, H ; Drumond, M ; Falsafi, B ; Ausavarungnirun, R ; Mutlu, O ; Sharif University of Technology
    Association for Computing Machinery  2021
    Abstract
    Graphics Processing Units (GPUs) employ large register files to accommodate all active threads and accelerate context switching. Unfortunately, register files are a scalability bottleneck for future GPUs due to long access latency, high power consumption, and large silicon area provisioning. Prior work proposes hierarchical register file to reduce the register file power consumption by caching registers in a smaller register file cache. Unfortunately, this approach does not improve register access latency due to the low hit rate in the register file cache. In this article, we propose the Latency-Tolerant Register File (LTRF) architecture to achieve low latency in a two-level hierarchical... 

    Photoelectrochemical water-splitting using CuO-Based electrodes for hydrogen production: a review

    , Article Advanced Materials ; Volume 33, Issue 33 , 2021 ; 09359648 (ISSN) Siavash Moakhar, R ; Hosseini Hosseinabad, S. M ; Masudy Panah, S ; Seza, A ; Jalali, M ; Fallah Arani, H ; Dabir, F ; Gholipour, S ; Abdi, Y ; Bagheri Hariri, M ; Riahi Noori, N ; Lim, Y. F ; Hagfeldt, A ; Saliba, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    The cost-effective, robust, and efficient electrocatalysts for photoelectrochemical (PEC) water-splitting has been extensively studied over the past decade to address a solution for the energy crisis. The interesting physicochemical properties of CuO have introduced this promising photocathodic material among the few photocatalysts with a narrow bandgap. This photocatalyst has a high activity for the PEC hydrogen evolution reaction (HER) under simulated sunlight irradiation. Here, the recent advancements of CuO-based photoelectrodes, including undoped CuO, doped CuO, and CuO composites, in the PEC water-splitting field, are comprehensively studied. Moreover, the synthesis methods,... 

    A novel superhydrophilic/superoleophobic nanocomposite PDMS-NH2/PFONa-SiO2 coated-mesh for the highly efficient and durable separation of oil and water

    , Article Surface and Coatings Technology ; Volume 394 , 2020 Amirpoor, S ; Siavash Moakhar, R ; Dolati, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A surface to separate oil–water mixtures is a global concern and highly needed particularly in oil industries. The present study was conducted to create a novel superhydrophilic/superoleophobic nanocomposite coating on the stainless-steel mesh for the aim of oil/water separation. Different hydrophilic resins along with PFOA as oleophobic agent with 15 flours in its chemical structure and various oxide nanoparticles containing SiO2 and TiO2 at different concentrations were studied to achieve superhydrophilic/superoleophobic surface. The fabricated nanocomposites were fully characterized via field-emission scanning microscopy (FESEM), atomic force microscopy (AFM) and Fourier-transform... 

    Preparation and characterization of superhydrophobic and highly oleophobic FEVE-SiO2 nanocomposite coatings

    , Article Progress in Organic Coatings ; Volume 138 , 2020 Ghadimi, M.R ; Dolati, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Here, an excellent superhydrophobic and highly oleophobic nanocomposite coating composed of fluoroethylene-vinyl ether (FEVE) resin as a matrix for modified SiO2 nanoparticles was synthesized on a stainless-steel wire mesh substrate via a facile sol-gel method. The surface morphology, microstructure, composition, and roughness of the coatings were investigated by field emission scanning electron microscopy (FESEM) equipped with energy-dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The most efficient coating with superhydrophobicity and high oleophobicity feature indicates the water and oil repellency with contact angles (CAs) of 152° and 141°, respectively, with the high... 

    Influence of new superhydrophobic micro-structures on delaying ice formation

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 595 , 2020 Kamali Moghadam, R ; Taeibi Rahni, M ; Javadi, K ; Davoudian, S. H ; Miller, R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Drop motion on different types of new proposed micro-structure surfaces has been numerically investigated to find the optimum structure in view point of ice formation delaying. The droplet automatically moves on the inclined surfaces due to gravity forces. To validate the numerical algorithm, three different bench mark problems have been considered. The results indicate that the present algorithm is trustable for the presented numerical simulations. Then the validated numerical approach has been used to simulate droplet motion on nine proposed superhydrophobic surfaces in the same conditions. Comparison the drop motion on different micro-structure surfaces at different time indicate that... 

    Three-dimensional bioprinting of functional skeletal muscle tissue using gelatin methacryloyl-alginate bioinks

    , Article Micromachines ; Volume 10, Issue 10 , 2019 ; 2072666X (ISSN) Seyedmahmoud, R ; Çelebi Saltik, B ; Barros, N ; Nasiri, R ; Banton, E ; Shamloo, A ; Ashammakhi, N ; Dokmeci, M. R ; Ahadian, S ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    Skeletal muscle tissue engineering aims to fabricate tissue constructs to replace or restore diseased or injured skeletal muscle tissues in the body. Several biomaterials and microscale technologies have been used in muscle tissue engineering. However, it is still challenging to mimic the function and structure of the native muscle tissues. Three-dimensional (3D) bioprinting is a powerful tool to mimic the hierarchical structure of native tissues. Here, 3D bioprinting was used to fabricate tissue constructs using gelatin methacryloyl (GelMA)-alginate bioinks. Mechanical and rheological properties of GelMA-alginate hydrogels were characterized. C2C12 myoblasts at the density 8 × 106 cells/mL... 

    A lightweight hierarchical authentication scheme for internet of things

    , Article Journal of Ambient Intelligence and Humanized Computing ; Volume 10, Issue 7 , 2019 , Pages 2607-2619 ; 18685137 (ISSN) Akbarzadeh, A ; Bayat, M ; Zahednejad, B ; Payandeh, A ; Aref, M. R ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The Internet of Things (IoT) technology enables numerous things with different processing power and storage capacity to communicate and share data with each other. Considering the constrained devices of the IoT network in terms of processing and storage, designing a lightweight authentication scheme is quite important. So in this paper, we propose a lightweight authentication scheme based on Chebyshev Chaotic Maps. In the proposed scheme we apply a hierarchical structure to define different access controls for various entities. We then provide a formal analysis via the BAN logic to show the security of our scheme. Moreover, we compare our proposed scheme with previous ones in terms of... 

    A graph-theoretic approach toward autonomous skill acquisition in reinforcement learning

    , Article Evolving Systems ; Volume 9, Issue 3 , 2018 , Pages 227-244 ; 18686478 (ISSN) Kazemitabar, S. J ; Taghizadeh, N ; Beigy, H ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Hierarchical reinforcement learning facilitates learning in large and complex domains by exploiting subtasks and creating hierarchical structures using these subtasks. Subtasks are usually defined through finding subgoals of the problem. Providing mechanisms for autonomous subgoal discovery and skill acquisition is a challenging issue in reinforcement learning. Among the proposed algorithms, a few of them are successful both in performance and also efficiency in terms of the running time of the algorithm. In this paper, we study four methods for subgoal discovery which are based on graph partitioning. The idea behind the methods proposed in this paper is that if we partition the transition... 

    A lightweight hierarchical authentication scheme for internet of things

    , Article Journal of Ambient Intelligence and Humanized Computing ; 2018 , Pages 1-13 ; 18685137 (ISSN) Akbarzadeh, A ; Bayat, M ; Zahednejad, B ; Payandeh, A ; Aref, M. R ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    The Internet of Things (IoT) technology enables numerous things with different processing power and storage capacity to communicate and share data with each other. Considering the constrained devices of the IoT network in terms of processing and storage, designing a lightweight authentication scheme is quite important. So in this paper, we propose a lightweight authentication scheme based on Chebyshev Chaotic Maps. In the proposed scheme we apply a hierarchical structure to define different access controls for various entities. We then provide a formal analysis via the BAN logic to show the security of our scheme. Moreover, we compare our proposed scheme with previous ones in terms of... 

    A bio-inspired modular hierarchical structure to plan the sit-to-stand transfer under varying environmental conditions

    , Article Neurocomputing ; Volume 118 , 2013 , Pages 311-321 ; 09252312 (ISSN) Sadeghi, M ; Emadi Andani, M ; Parnianpour, M ; Fattah, A ; Sharif University of Technology
    2013
    Abstract
    Human motion planning studies are of considerable importance in producing human-like trajectories for various industrial or clinical applications (e.g. assistive robots). In this case, the capability of Central Nervous System (CNS) in generating a large repertoire of actions can be inspirational to develop more efficient motion planning approaches. Here, inspired by structural and functional modularity in the CNS, a novel modular and hierarchical model is developed to plan the sit-to-stand (STS) transfer under varying environmental conditions. In this model, the planning process is distributed among several functionally simple modules. The cooperation of modules enables the model to plan the... 

    Two-level optimal load-frequency control for multi-area power systems

    , Article International Journal of Electrical Power and Energy Systems ; Volume 53, Issue 1 , December , 2013 , Pages 540-547 ; 01420615 (ISSN) Rahmani, M ; Sadati, N ; Sharif University of Technology
    2013
    Abstract
    In large-scale power systems, classical centralized control approaches may fail due to geographically distribution of information and decentralized controllers result in sub-optimal solution for load-frequency control (LFC) problems. In this paper, a two-level structure is presented to obtain optimal solution for LFC problems and also reduce the computational complexity of centralized controllers. In this approach, an interconnected multi-area power system is decomposed into several sub-systems (areas) at the first-level. Then an optimization problem in each area is solved separately, with respect to its local information and interaction signals coming from other areas. At the second-level,... 

    Mining distributed frequent itemsets using a gossip based protocol

    , Article Proceedings - IEEE 9th International Conference on Ubiquitous Intelligence and Computing and IEEE 9th International Conference on Autonomic and Trusted Computing, UIC-ATC 2012 ; 2012 , Pages 780-785 Bagheri, M ; Mirian Hosseinabadi, S. H ; Mashayekhi, H ; Habibi, J ; Sharif University of Technology
    2012
    Abstract
    Recently, there has been a growing attention in frequent itemset mining in distributed systems. In this paper, we present an algorithm to extract frequent itemsets from large distributed datasets. Our algorithm uses gossip as the communication mechanism and does not rely on any central node. In gossip based communication, nodes repeatedly select other random nodes in the system, and exchange information with them. Our algorithm proceeds in rounds and provides all nodes with the required support counts of itemsets, such that each node is able to extract the global frequent itemsets. For local iteration and generation of candidate itemsets, a trie data structure is used, which facilitates the... 

    Development of a new analytical tool to design hierarchical truss beams for natural frequency

    , Article Journal of Mechanical Science and Technology ; Volume 25, Issue 10 , October , 2011 , Pages 2495-2503 ; 1738494X (ISSN) Fazli, N ; Malaek, S. M. B ; Abedian, A ; Teimouri, H ; Sharif University of Technology
    2011
    Abstract
    A set of recursive equations are introduced for optimum design of a wide range of hierarchical truss beams to satisfy a minimum required natural frequency. The design equations are based on a general analytical solution, which are derived based on a critical dimensional analysis. A practical example is examined in both 2D and 3D spaces, which promises substantial mass reduction, as much as 99%, when using high order hierarchical truss beams. The results are verified by numerical evaluation of three case studies. The approach looks also very promising to design nanostructures when it comes to the problems associated with vibration  

    FTS: An efficient tree structure based tool for searching in large data sets

    , Article ICIME 2010 - 2010 2nd IEEE International Conference on Information Management and Engineering, 16 April 2010 through 18 April 2010 ; Volume 2 , April , 2010 , Pages 294-298 ; 9781424452644 (ISBN) Saejdi Badashian, A ; Najafpour, M ; Mahdavi, M ; Ashurzad Delcheh, M ; Khalkhali, I ; Sharif University of Technology
    2010
    Abstract
    This paper addresses the issue of finding and accessing desired items when a large amount of data items are concerned, by proposing some concepts based on Tree Search Structure -a hierarchical structure for information retrieval. The proposed concepts are applicable to several environments such as File Managers on PCs, help tree views, site maps, taxonomies, and cell phones. A software tool, FTS (File Tree Search), that is developed to utilize the proposed concepts is also presented  

    Automatic discovery of subgoals in reinforcement learning using strongly connected components

    , Article 15th International Conference on Neuro-Information Processing, ICONIP 2008, Auckland, 25 November 2008 through 28 November 2008 ; Volume 5506 LNCS, Issue PART 1 , 2009 , Pages 829-834 ; 03029743 (ISSN); 3642024890 (ISBN); 9783642024894 (ISBN) Kazemitabar, J ; Beigy, H ; Asia Pacific Neural Network Assembly (APNNA); International Neural Network Society (INNS); IEEE Computational Intelligence Society; Japanese Neural Network Society (JNNS); European Neural Network Society (ENNS) ; Sharif University of Technology
    2009
    Abstract
    The hierarchical structure of real-world problems has resulted in a focus on hierarchical frameworks in the reinforcement learning paradigm. Preparing mechanisms for automatic discovery of macro-actions has mainly concentrated on subgoal discovery methods. Among the proposed algorithms, those based on graph partitioning have achieved precise results. However, few methods have been shown to be successful both in performance and also efficiency in terms of time complexity of the algorithm. In this paper, we present a SCC-based subgoal discovery algorithm; a graph theoretic approach for automatic detection of subgoals in linear time. Meanwhile a parameter tuning method is proposed to find the... 

    Autonomous unmanned helicopter landing system design for safe touchdown on 6DOF moving platform

    , Article 5th International Conference on Autonomic and Autonomous Systems, ICAS 2009, Valencia, 20 April 2009 through 25 April 2009 ; 2009 , Pages 245-250 ; 9780769535845 (ISBN) Esmailifar, S. M ; Saghafi, F ; Sharif University of Technology
    2009
    Abstract
    In this research, an adaptive control system is designed for a safe touchdown of an unmanned helicopter during its landing phase on a 6DOF moving platform. In this paper the landing phase is divided into the approach and touchdown stages. In the first stage, the helicopter tries to attenuate the initial position and direction errors and in the next stage, the platform's attitude is tracked for a safe touchdown. The hierarchical structure of the proposed control system includes supervisory and tracking levels. The supervisory level recognizes the landing stage and the tracking level controls and compensates the errors based on SDRE (State Dependent Riccati Equation) method. The robustness and...