Loading...
Search for: fluid-dynamics
0.011 seconds
Total 748 records

    A new geochemical reactive transport model for sandstone acidizing

    , Article Computers and Geosciences ; Volume 166 , 2022 ; 00983004 (ISSN) Khojastehmehr, M ; Bazargan, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Understanding the chemistry of sandstone acidizing is important in designing an effective treatment for subsurface rock formations. The complex chemistry of sandstone systems leads to the precipitation of minerals that contribute to formation damage. Thus, monitoring the concentration and location of precipitates is necessary. In this work, a continuum-scale sequential implicit LEA/PLEA reactive transport model is developed and programmed through coupling OpenFOAM and Reaktoro to improve the model prediction. The proposed LEA/PLEA models are compared for core acidizing simulations at relatively high and low Damköhler numbers. We found that the common assumption of kinetically-controlled flow... 

    Thermal performance analysis of an energy pile with triple helix ground heat exchanger

    , Article Geothermics ; Volume 104 , 2022 ; 03756505 (ISSN) Farajollahi, A. H ; Asgari, B ; Rostami, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A Ground Source Heat Pump (GSHP) is a renewable energy-based HVAC system that extracts or supplies heat from/to the ground via a Ground Heat Exchanger (GHE). One of the most commonly used types of GHE in GSHP systems is the energy pile. In this realm, the GSHP system with a triple helix energy pile has become the focus of attention. To this aim, a comprehensive three-dimensional transient Computational Fluid Dynamics model of the energy pile with triple helix GHE and the surrounding soil is developed. The effect of several parameters, including helix pitch, helix diameter and pipe diameter, on the thermal performance of the system, is investigated. Simulated cases are chosen using the design... 

    Probabilistic CFD analysis on the flow field and performance of the FDA centrifugal blood pump

    , Article Applied Mathematical Modelling ; Volume 109 , 2022 , Pages 555-577 ; 0307904X (ISSN) Mohammadi, R ; Karimi, M. S ; Raisee, M ; Sharbatdar, M ; Sharif University of Technology
    Elsevier Inc  2022
    Abstract
    The present study is set out to systematically investigate the combined impact of operational, geometrical, and model uncertainties on the hemodynamics and performance characteristics in the U.S. Food and Drug Administration (FDA) benchmark centrifugal blood pump. Non-intrusive Polynomial Chaos Expansion (NIPCE) has been utilized to propagate the uncertainty of 12 random input variables in the flow field and the performance characteristics of the blood pump at three working conditions. The global sensitivity of the Quantities of Interest (QoI) to the uncertain input parameters was measured through the Sobol’ indices. The Multiple Reference Frames (MRF) approach and the SST k−ω turbulence... 

    Details study on the kinematic characteristics of manta ray section in flapping motion and exploring its application in wave glider propulsion system

    , Article Sustainable Energy Technologies and Assessments ; Volume 53 , 2022 ; 22131388 (ISSN) Abbaspour, M ; Safari, H ; Darbandi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    It has always been a human challenge to inspire natural configurations and phenomena and benefit from their merits in improving the performances of man-made proposed aero/hydro vehicles. For example, the manta rays are known for their great swimming performances. To design and fabricate an underwater robot based on the manta ray geometry and its kinematic characteristics, it is important to initially study its hydrodynamic behavior and possibly arrive at some key design parameters, which can remarkably help to figure out an optimum geometry with high swimming performances. The main objective of this study is to focus on the merits of gliding motion inspired by the manta ray fish considering... 

    A fully explicit incompressible Smoothed Particle Hydrodynamics method for multiphase flow problems

    , Article Engineering Analysis with Boundary Elements ; Volume 143 , 2022 , Pages 501-524 ; 09557997 (ISSN) Vakilha, M ; Hopp Hirschler, M ; Shadloo, M. S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Multiphase flow is a challenging area of computational fluid dynamics (CFD) due to their potential large topological change and close coupling between the interface and fluid flow solvers. As such, Lagrangian meshless methods are very well suited for solving such problems. In this paper, we present a new fully explicit incompressible Smoothed Particle Hydrodynamics approach (EISPH) for solving multiphase flow problems. Assuming that the change in pressure between consecutive time-steps is small, due to small time steps in explicit solvers, an approximation of the pressure for following time-steps is derived. To verify the proposed method, several test cases including both single-phase and... 

    Dynamics of electrostatic interaction and electrodiffusion in a charged thin film with nanoscale physicochemical heterogeneity: Implications for low-salinity waterflooding

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 650 , 2022 ; 09277757 (ISSN) Pourakaberian, A ; Mahani, H ; Niasar, V ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The slow kinetics of wettability alteration toward a more water-wetting state by low-salinity waterflooding (LSWF) in oil-brine-rock (OBR) systems is conjectured to be pertinent to the electrokinetic phenomena in the thin brine film. We hypothesize that the nanoscale physicochemical heterogeneities such as surface roughness and surface charge heterogeneity at the rock/brine interface control further the dynamics of electrodiffusion and electrostatic disjoining pressure (Πel), thus the time-scale and the magnitude of the low salinity effect (LSE). In this regard, film-scale computational fluid dynamics (CFD) simulations were performed. The coupled Poisson-Nernst-Planck (PNP) equations were... 

    Heat transfer intensification of turbulent forced convection by inserting discontinuous twisted tapes in a wavy tube; hydrothermal and thermodynamics analysis

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 181 , 2022 ; 02552701 (ISSN) Fazel, Z ; Sadrhosseini, H ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The current study presents a numerical investigation on turbulent hydrothermal characteristics in a wavy passage equipped with discontinuous twisted tapes. The working fluid is water and passage walls are kept under constant wall temperature. The effect of Reynolds number (Re = 2500, 4500, 6500, 8500 and 10500), twist angle (TA = 90∘ and 180∘) and inclination angle (IA = 15∘ and 30∘) on velocity fields and streamlines, temperature contours, Nusselt number, friction factor, turbulent kinetic energy (TKE), thermal performance factor (TPF), energy efficiency factor (EEF) and entropy generation rate are evaluated. More uniform temperature and velocity fields can be found as both wavy passage and... 

    New insight into hydrodynamic and cake erosion mechanism during rotating-disk dynamic microfiltration of concentrated bentonite suspensions at different salinity conditions

    , Article Separation and Purification Technology ; Volume 300 , 2022 ; 13835866 (ISSN) Movahedi, H ; Jamshidi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The present study investigates the dynamic filtration of concentrated slurry fluids containing colloidal clay particles under different salinity, shear flow, and flux rate conditions. The dynamic filtration study was carried out by the filtration cell equipped with a rotating disk to apply shear stress over the membrane surface. A 3D CFD simulation has been implemented to model the hydrodynamic flows inside the filtration cell to obtain the wall shear stress (WSS) on the membrane surface at different disk rotation speeds. The thickness and surface patterns of fouling were captured utilizing a surface profilometer. First, the cake-filtration model was used to predict the flux rate and fouling... 

    Performance evaluation of the solar-driven multi-ejector refrigeration cycle without an auxiliary heat source

    , Article Applied Thermal Engineering ; Volume 217 , 2022 ; 13594311 (ISSN) Beyrami, J ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Solar-driven ejector refrigeration (SER) systems have been granted special attention as a green and sustainable replacement for conventional vapor compression cooling systems. However, despite their significant advantages, SER systems suffer from a relatively low coefficient of performance and failure at high ambient temperatures and low solar radiations. Therefore, the need for an auxiliary heat source and cooling system has hindered their adoption in practice. In an attempt to eliminate the need for an auxiliary heat source and cooling system, this contribution puts forward a novel Solar-driven Multi-Ejector Refrigeration (SMER) system with an internal heat exchanger, a regenerator, and a... 

    Numerical study of the effect of hemodynamic variables on LDL concentration through the single layer of the Left Anterior Descending coronary artery (LAD) under the heart pulse

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 236, Issue 7 , 2022 , Pages 994-1008 ; 09544119 (ISSN) Biglarian, M ; Seyedhossein, S. S ; Firoozabadi, B ; MomeniLarimi, M ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Heart attack is one of the most common causes of death in the world. Coronary artery disease is the most recognized cause of heart attack whose onset and progression have been attributed to low-density lipoprotein (LDL) passing through the wall of the artery. In this paper, hemodynamic variables as well as the concentration of LDL through the coronary porous artery at the Left Anterior Descending coronary artery (LAD), and its first diagonal branch (D1) under the heart motion investigated using computational simulation. The geometry that has been studied in this paper is the first bifurcation of Left Anterior Descending (LAD) that has been placed on a perimeter of hypothetical sphere... 

    A new method for calculating laser intensity distribution on workpiece surface in laser-directed energy deposition process by considering powder stream distribution and laser attenuation

    , Article International Journal of Advanced Manufacturing Technology ; Volume 121, Issue 1-2 , 2022 , Pages 337-348 ; 02683768 (ISSN) Sobhanieh, N ; Akbari, J ; Moradi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Laser-directed energy deposition is a fast-growing method for manufacturing complex geometries and materials that are hard to shape with conventional manufacturing methods. However, there are some aspects of this process that need more researches and experiments to be completely understood. Two of these are laser attenuation and laser intensity distribution on the workpiece surface. In this paper, a new method is proposed for calculating laser attenuation without simplification applied in previous works. Despite other studies that consider a predefined powder distribution, the result of a developed 3D CFD model of the powder stream is utilized for defining the position of particles in the... 

    A comparative study on bifacial photovoltaic/thermal modules with various cooling methods

    , Article Energy Conversion and Management ; Volume 263 , 2022 ; 01968904 (ISSN) Ma, T ; Kazemian, A ; Habibollahzade, A ; Salari, A ; Gu, W ; Peng, J ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The bifacial photovoltaic/thermal module is an emerging concept that can provide electricity and heat simultaneously, taking advantage of both front and rear sides of the panel; therefore, exhibiting a better performance compared to a conventional photovoltaic module or photovoltaic thermal module. In this study, four configurations of the bifacial photovoltaic/thermal module with different cooling methods have been proposed, i.e., cooling performed at either the upper or the lower surface, in parallel (applied to both upper and lower surfaces having similar start/endpoints), and swinging air back and forth (by guiding the air over the upper and lower surfaces, respectively). The... 

    On the thermal performance enhancement of spiral-coil energy piles with a thermal recovery system

    , Article Energy and Buildings ; Volume 269 , 2022 ; 03787788 (ISSN) Nazmabadi, R ; Asgari, B ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The pile foundation designed to ensure building stability when equipped with heat exchanger pipes to harvest geothermal energy is called an energy pile. Ground Source Heat Pump (GSHP) systems combined with energy piles have been used and developed as sustainable and efficient HVAC systems. Energy piles suffer from cold or heat accumulation in and around the pile, degrading their long-term performance. The current study seeks to alleviate this problem by proposing a thermal recovery system. The proposed system circulates ambient air in the pile foundation to extract the accumulated heat. A three-dimensional transient computational fluid dynamics model of the GSHP system coupled with the... 

    Numerical simulations of the hydrodynamic performance of the propeller with wake equalizing duct behind the ship

    , Article Scientia Iranica ; Volume 29, Issue 5 B , 2022 , Pages 2332-2348 ; 10263098 (ISSN) Rezaei, S ; Bamdadinejad, M ; Ghassemi, H ; Sharif University of Technology
    Sharif University of Technology  2022
    Abstract
    The equalizing wake flow into the propeller behind the ship is important from the hydrodynamic performance viewpoint. In this study, numerical simulations of the DTMB4119 propeller with two symmetric and asymmetric duct types behind the KRISO Container Ship (KCS) are performed using Computational Fluid Dynamics (CFD). In order to improve the wake equaling flow, a combined duct and stators' configurations are installed before the propeller in the stern of the ship and its hydrodynamic performance is studied using CFD. A duct with the NACA4415 section and two types of stator configurations are selected. The STAR-CCM+ software using the finite volume discretization method was used to solve the... 

    CFD simulation of thermal performance of hybrid oil-Cu-Al2O3 nanofluid flowing through the porous receiver tube inside a finned parabolic trough solar collector

    , Article Sustainable Energy Technologies and Assessments ; Volume 50 , 2022 ; 22131388 (ISSN) Samiezadeh, S ; Khodaverdian, R ; Doranehgard, M. H ; Chehrmonavari, H ; Xiong, Q ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, we perform numerical simulations to investigate the thermal and flow characteristics of a parabolic trough solar collector equipped with a porous receiver tube and internal longitudinal fins. The heat transfer medium is a synthetic oil-Cu-Al2O3 hybrid nanofluid. We examine the thermal characteristics of the nanofluid in response to variations in several system parameters. We find that at Reynolds numbers between 5 × 103 and 5 × 105, increasing the volume fraction of Cu nanoparticles can increase the temperature gain at the exit of the receiver tube by 6.4%. Furthermore, the temperature gradient in the cross-section of the collector increases as the direct normal solar... 

    Thermal, thermodynamic and exergoeconomic investigation of a parabolic trough collector utilizing nanofluids

    , Article Applied Thermal Engineering ; Volume 206 , 2022 ; 13594311 (ISSN) Vahedi, B ; Golab, E ; Nasiri Sadr, A ; Vafai, K ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The exploitation of solar energy facilitates the renewable energy paradigm. In this regard, parabolic trough collectors (PTC) are considered as a useful set-up to absorb solar energy. Simultaneous study of thermal, thermodynamic, and exergoeconomic performance of PTC systems paves the way for designers and manufacturers to not only have a better insight into understanding the underlying concepts about the operation of PTC systems but also to find the most effective and cost-effective circumstances. This study aims at analyzing a practical PTC system by considering an evacuated absorber tube with glass cover, non-uniform heat flux, and taking into account the convective and radiative heat... 

    Simulation of proppant transport at intersection of hydraulic fracture and natural fracture of wellbores using CFD-DEM

    , Article Particuology ; Volume 63 , 2022 , Pages 112-124 ; 16742001 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Proppants transport is an advanced technique to improve the hydraulic fracture phenomenon, in order to promote the versatility of gas/oil reservoirs. A numerical simulation of proppants transport at both hydraulic fracture (HF) and natural fracture (NF) intersection is performed to provide a better understanding of key factors which cause, or contribute to proppants transport in HF–NF intersection. Computational fluid dynamics (CFD) in association with discrete element method (DEM) is used to model the complex interactions between proppant particles, host fluid medium and fractured walls. The effect of non-spherical geometry of particles is considered in this model, using the multi-sphere... 

    A hybrid analytical-numerical model for predicting the performance of the Horizontal Ground Heat Exchangers

    , Article Geothermics ; Volume 101 , 2022 ; 03756505 (ISSN) Bahmani, M.H ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Horizontal Ground Heat Exchangers (HGHE) as a means of exploiting geothermal energy has come to the fore for a few decades. Various analytical and Computational Fluid Dynamics (CFD) methods have been proposed to predict the performance of the HGHEs. The available analytical approaches are fast; however, they are based on various simplifications and assumptions, affecting their accuracy. On the other hand, CFD methods are more accurate, but their computational cost is a burden. Therefore there is an acute need for an accurate and fast method for predicting the long-term performance of HGHEs. To this aim, this study puts forward a novel hybrid analytical-numerical model for predicting the... 

    Investigating the effects of precursor concentration and gelling parameters on droplet-based generation of Ca-Alginate microgels: identifying new stable modes of droplet formation

    , Article Materials Today Chemistry ; Volume 24 , 2022 ; 24685194 (ISSN) Besanjideh, M ; Rezaeian, M ; Mahmoudi, Z ; Shamloo, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Droplet-based microfluidics is an attractive approach for producing microgels due to its high potential to control the size and shape of the particles and precisely entrap the substances within the hydrogel matrix. However, the microfluidic generation of monodisperse microgels with desired structures is still challenging. Indeed, the rheological and interfacial properties of the immiscible fluids, as well as the adopted gelling strategy, play important roles in microfluidic methods. Herein, sodium alginate droplets with different concentrations are generated via a microfluidic device with a flow-focusing unit. Besides, a combined in situ and ex situ strategy is optimized to crosslink sodium... 

    Application of numerical simulation to solid phase-microextraction for decreasing of extraction time of pyrene and phthalate esters on solid coatings

    , Article Journal of Chromatography A ; Volume 1673 , 2022 ; 00219673 (ISSN) Jafari, M ; Jamshidian, M ; Habibi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Reynolds-Averaged Navier-Stokes (RANS) approach with the k-ε closure model is employed for the first time to simulate direct Solid-Phase Micro-Extraction (SPME) computationally. Simulations are performed by using COMSOL Multiphysics in order to examine methods to decrease the extraction time. Experiments are also conducted to support data obtained from the numerical framework. Di-n-Butyl Phthalate (DNBP) and etched steel wire are chosen as the analyte and the adsorbent, respectively. Stirring rate, fiber's location, stirrer magnet's size, and the method of sample rotation are examined to decrease the extraction time. In addition, the effects of adding a baffle to the vial and implementing a...