Loading...
Search for: experimental-data
0.014 seconds
Total 223 records

    Experimental and Modeling Study of Gas/WAG Injection at Near Miscible Condition in One of Iranian Oil Reservoirs

    , M.Sc. Thesis Sharif University of Technology Shahrokhi, Omid (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Massihi, Mohsen (Supervisor)
    Abstract
    Most of the Iranian oil reservoirs are reaching end of their natural production life, hence they are suitable candidates for EOR common processes like gas injection and WAG injection. Studies have shown that gas and WAG injection can be applied for optimal oil production. Past studies have been mainly on gas and WAG injection in immiscible or fully miscible conditions and there is a limited amount of data available on performance of these methods in near miscible conditions. Miscible injection is not feasible in old Iranian oil reservoirs due to their depleted pressure. Moreover injection in lower pressures is attractive from both economical and operational standpoints since this reduces the... 

    Main System Investigation of Turbocharged Diesel Engine During Performance Upgrade

    , M.Sc. Thesis Sharif University of Technology Norouzi, Jasem (Author) ; Hajilouy Benisi, Ali (Supervisor) ; Nouri Broujerdi, Ali (Supervisor)
    Abstract
    The internal combustion engine power is determined by the amount of fuel effectively burned inside the engine cylinders. On the other hand, the fuel consumption is proportional to the air mass that enters the cylinders in each cycle. Conventionally, incoming the engine inlet air is at ambient conditions. However, with higher air density, the engine power increases for the same dimensions, so-called turbocharging. Although the engine's structure remains unchanged, it may be necessary to adjust the main systems of the engine simultaneously. This research investigated maximizing the power of a turbocharged diesel engine based on upgrading the degree of turbocharging. For this purpose, the EM355... 

    Modeling of tail dynamic behavior and trajectory control of a fish-robot using fuzzy logic

    , Article IEEE International Conference on Robotics and Biomimetics ; 2010 , pp. 885-890 ; ISBN: 9781424493173 Alamdar, A. R ; Dehghani, M. R ; Alasty, A ; Sharif University of Technology
    Abstract
    To have a complete model of a thunniform Fish-Robot, models of both body and tail are required. The dynamic model of the body is developed according to the parameters of a thunniform Fish-Robot built in MIT University, while, as the main part of this paper, the dynamic model of the tail is developed using fuzzy logic. Using experimental data and table look-up scheme, a fuzzy black box is introduced that gives the value of thrust force generated for any value of the Fish-Robot's input parameters: frequency of tail oscillation, amplitude of tail oscillation and speed of the Fish-Robot. In the second part, a trajectory fuzzy controller is designed for the Fish-Robot. The output of trajectory... 

    Study on non-equilibrium effects during spontaneous imbibition

    , Article Energy and Fuels ; Vol. 25, issue. 7 , June , 2011 , p. 3053-3059 ; ISSN: 08870624 Mirzaei-Paiaman, A ; Masihi, M ; Standnes, D. C ; Sharif University of Technology
    Abstract
    Spontaneous imbibition of water into the matrix blocks because of capillary forces is an important recovery mechanism for oil recovery from naturally fractured reservoirs. In modeling this process, it has been assumed classically that local equilibrium is reached and, therefore, capillary pressure and relative permeability functions are only a function of water saturation, resulting in the appearance of the self-similarity condition. In some works published in the last 2 decades, it has, however, been claimed that local equilibrium is not reached in porous media, and therefore, opposite the classical local-equilibrium/self-similar approach, non-equilibrium effects should be taken into... 

    Prediction of asphaltene precipitation during solvent/CO2 injection conditions: A comparative study on thermodynamic micellization model with a different characterization approach and solid model

    , Article Journal of Canadian Petroleum Technology ; Vol. 50, issue. 3 , March , 2011 , p. 65-74 Tavakkoli, M ; Masihi, M ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    There are different thermodynamic models that have been applied for modelling of asphaltene precipitation caused by various reasons, such as solvent/CO2 injection and pressure depletion. In this work, two computer codes based on two different asphaltene precipitation thermodynamic models-the first being the thermodynamic micellization model with a different characterization approach and the second being the solid model-have been developed and used for predicting asphaltene precipitation data reported in the literature as well as in the obtained data for Sarvak reservoir crude, which is one of the most potentially problematic Iranian heavy oil reserves under gas injection conditions. For the... 

    Iterative coupled experimental-numerical evaluation of dispersivity in fractured porous media using micromodel system

    , Article 73rd European Association of Geoscientists and Engineers Conference and Exhibition 2011: Unconventional Resources and the Role of Technology. Incorporating SPE EUROPEC 2011 ; Vol. 4, issue , 2011 , p. 2461-2466 Saidian, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Kianinejad, A ; Sharif University of Technology
    Abstract
    In this study a new iterative algorithm is developed to evaluate dispersivity in fracture and matrix, distinctly. The novelty of proposed algorithm is using mathematical model of solute transport in fractured porous media coupled with experimental data iteratively. A fractured glass micromodel has been designed to visualize the interaction between fracture and matrix during displacement of n-Decane by n-Octane at constant rate. The similarity between numerical and experimental model has been enhanced by reducing the assumptions which were applied in previous related studies. The iteration is performed on velocity components of solute transport and longitudinal as well as transversal... 

    Prediction of asphaltene precipitation during pressure depletion and CO2 injection for heavy crude

    , Article Petroleum Science and Technology ; Vol. 28, issue. 9 , Mar , 2009 , p. 892-902 ; ISSN: 10916466 Tavakkoli, M ; Kharrat, R ; Masihi, M ; Ghazanfari, M. , H ; Sharif University of Technology
    Abstract
    In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, and the oil and gas phases are modeled with an equation of state. The Peng-Robinson equation of state (PR-EOS) was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on the solid model was developed and used for predicting asphaltene precipitation data reported in the literature as well as the experimental data obtained from high-pressure, high-temperature asphaltene precipitation experiments performed on Sarvak reservoir... 

    Experimental measurement and modeling of saturated reservoir oil viscosity

    , Article Korean Journal of Chemical Engineering ; Vol. 31, Issue. 7 , 2014 , pp. 1253-1264 ; ISSN: 02561115 Hemmati-Sarapardeh, A ; Majidi, S. M. J ; Mahmoudi, B ; Ramazani, S. A A ; Mohammadi, A. H ; Sharif University of Technology
    Abstract
    A novel mathematical-based approach is proposed to develop reliable models for prediction of saturated crude oil viscosity in a wide range of PVT properties. A new soft computing approach, namely least square support vector machine modeling optimized with coupled simulated annealing optimization technique, is proposed. Six models have been developed to predict saturated oil viscosity, which are designed in such a way that could predict saturated oil viscosity with every available PVT parameter. The constructed models are evaluated by carrying out extensive experimental saturated crude oil viscosity data from Iranian oil reservoirs, which were measured using a "Rolling Ball viscometer." To... 

    Anticorrosion properties of smart coating based on polyaniline nanoparticles/epoxy-ester system

    , Article Progress in Organic Coatings ; Volume 75, Issue 4 , 2012 , Pages 502-508 ; 03009440 (ISSN) Arefinia, R ; Shojaei, A ; Shariatpanahi, H ; Neshati, J ; Sharif University of Technology
    2012
    Abstract
    In this study, the anticorrosive effect of dodecylbenzenesulfonicacid-doped polyaniline nanoparticles [n-PANI (DBSA)] as a conductive polymer was investigated using electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) techniques. Initially, the n-PANI (DBSA) were successfully synthesized via inverse microemulsion polymerization leading to the spherical nanoparticles with an average diameter less than 30 nm. Two coating systems including 1 wt% n-PANI(DBSA) blended epoxy ester (n-PANI(DBSA)/EPE) and neat epoxy ester (EPE) were coated on the carbon steal substrate. The anticorrosion performance of the prepared coatings was studied using EIS measurement in 3.5%... 

    A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its finite element implementation

    , Article Finite Elements in Analysis and Design ; Volume 62 , 2012 , Pages 18-27 ; 0168874X (ISSN) Naghdabadi, R ; Baghani, M ; Arghavani, J ; Sharif University of Technology
    2012
    Abstract
    In this paper, employing the logarithmic (or Hencky) strain as a more physical measure of strain, the time-dependent response of compressible viscoelastic materials is investigated. In this regard, we present a phenomenological finite strain viscoelastic constitutive model, developed within the framework of irreversible thermodynamics with internal variables. The formulation is based on the multiplicative decomposition of the deformation gradient into elastic and viscoelastic parts, together with the use of the isotropic property of the Helmholtz strain energy function. Making use of a logarithmic mapping, we present an appropriate form of the proposed constitutive equations in the... 

    The prediction of permeability using an artificial neural network system

    , Article Petroleum Science and Technology ; Volume 30, Issue 20 , 2012 , Pages 2108-2113 ; 10916466 (ISSN) Pazuki, G. R ; Nikookar, M ; Dehnavi, M ; Al Anazi, B ; Sharif University of Technology
    2012
    Abstract
    The authors studied the efficiency and accuracy of neural network model for prediction of permeability as a key parameter in reservoir characterization. So, some multilayer perceptron (MLP) neural network models with different learning algorithms of Levenberg-Margnardt, back propagation, improved back propagation (IBP), and quick propagation with three layers and different node numbers (3, 4, 5, 6, 7) in the middle layer have been presented. These models have been obtained by 630 permeability data from one of offshore reservoirs located in Saudi Arabia. The accuracy of models was studied by comparing the obtained results of each model with experimental data. So, the neural network with IBP... 

    Kinetic modeling of propane dehydrogenation over an industrial catalyst in the presence of oxygenated compounds

    , Article Reaction Kinetics, Mechanisms and Catalysis ; Volume 107, Issue 1 , 2012 , Pages 141-155 ; 18785190 (ISSN) Barghi, B ; Fattahi, M ; Khorasheh, F ; Sharif University of Technology
    Springer  2012
    Abstract
    The aim of this study was to develop an appropriate kinetic model for propane dehydrogenation (PDH) over an industrial Pt-Sn/γ-Al 2O 3 catalyst in the presence of small amounts of oxygenated compounds. Experimental data were obtained from a previous study where catalytic PDH was carried out in a laboratory scale reactor at atmospheric pressure in the temperature range of 575-620 °C in the presence of small amounts of water or methanol. The kinetics of the main dehydrogenation reaction was described and the effects of water and methanol on coke deposition and catalyst sintering were considered in a catalyst deactivation model to explain the observed optimum level in the amount of added... 

    Experimental investigation and theoretical prediction of extrudate swell using conformational rheological models

    , Article International Polymer Processing ; Volume 27, Issue 4 , 2012 , Pages 478-485 ; 0930777X (ISSN) Yazdi, M. K ; Ahmad Ramazani, S. A ; Amoli, H. H ; Kamyabi, A ; Sharif University of Technology
    Hanser  2012
    Abstract
    In this study the extrudate swell of polymer solutions is estimated using the microstructure of polymer molecules. When a flexible polymer chain goes through a narrow die shear stress exerting on the chain will cause the polymer chain to be stretched along the flow direction. After emerging from die all external stresses vanish immediately and the chains tend to recover their previous state due to elastic recovery. This phenomenon will results in a gradual increase in extrudate diameter and this is used as the key idea for estimating swell ratio. A Giesekus based conformational model was used in order to predict polymer chains microstructure everywhere in the domain. The resulting PDE set... 

    Macroscopic recovery mechanisms of in-situ combustion process in heavy oil fractured systems: Effect of fractures geometrical properties and operational parameters

    , Article Society of Petroleum Engineers - SPE EOR Conference at Oil and Gas West Asia 2012, OGWA - EOR: Building Towards Sustainable Growth ; Volume 2 , 2012 , Pages 593-617 ; 9781622760473 (ISBN) Fatemi, S. M ; Kharrat, R ; Vossoughi, S ; Ghotbi, C ; Sharif University of Technology
    SPE  2012
    Abstract
    The In-Situ Combustion (ISC) as a thermal EOR process has been studied deeply in heavy oil reservoirs and is a promising method for certain non-fractured sandstones. However, its feasibility in fractured carbonates remained questionable. The aim of the present work was to understand the recovery mechanisms of ISC in fractured models and to evaluate the effect of fractures geometrical properties such as orientation, density, location and networking on the ISC recovery performance. Combustion parameters of a fractured low permeable carbonate heavy oil reservoir in Middle East called KEM; applied to simulation study. Simulator has been validated with KEM combustion tube experimental data and... 

    Modeling of transient permeate flux decline during crossflow microfiltration of non-alcoholic beer with consideration of particle size distribution

    , Article Journal of Membrane Science ; Volume 411-412 , September , 2012 , Pages 13-21 ; 03767388 (ISSN) Kazemi, M. A ; Soltanieh, M ; Yazdanshenas, M ; Sharif University of Technology
    2012
    Abstract
    Crossflow microfiltration of non-alcoholic beer is investigated numerically and it has been verified by experimental data. Due to the presence of particles with different sizes in feed suspension, a modified combination of three mechanisms of particle back-diffusion is developed to predict particle deposition and cake layer buildup during the process. The simulation results show that smaller particles (about 1μm) are the main contributor to the cake layer due to a minimum in back transport and are the main reason of the flux decline. On the other hand, larger particles (a p>20μm) are swept away along the membrane during the filtration process and move toward the membrane exit due to the... 

    Investigation on asphaltene deposition mechanisms during CO2 flooding processes in porous media: A novel experimental study and a modified model based on multilayer theory for asphaltene adsorption

    , Article Energy and Fuels ; Volume 26, Issue 8 , 2012 , Pages 5080-5091 ; 08870624 (ISSN) Jafari Behbahani, T ; Ghotbi, C ; Taghikhani, V ; Shahrabadi, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, oil recovery and permeability reduction of a tight sandstone core sample in miscible CO2 flooding processes due to asphaltene deposition were studied using an Iranian bottom hole live oil sample in order to distinguish between the mechanical plugging and adsorption mechanisms of asphaltene involved in the interfacial interaction of the asphaltene/mineral rock system. A novel experimental method was designed and proposed to measure the amount of deposited asphaltene due to different mechanisms using the cyclohexane or toluene reverse flooding and spectrophotometer. In this work, the bottom hole live oil sample was injected first to a long core and then CO 2 injection was... 

    Dynamics and control of the flexible needles for percutaneous application: Partial feedback linearization method

    , Article IEEE International Symposium on Industrial Electronics ; 2012 , Pages 831-834 ; 9781467301589 (ISBN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    2012
    Abstract
    In this paper the dynamics and control of the underactuated flexible needle will be discussed. To evaluate the dynamics of the needle, the study uses Saint Venant-Kirchhoff and finite element method. The model is validated using the experimental data provided in the literature. It is also shown that using iterative decomposition of the dynamics equation the unactuated degree of freedom of the needle tip can be feedback linearized. The effect of the control signal exerted on the tip is projected via iterative decomposition of the dynamics equation. The efficiency of the approach will be next explored through some examples  

    Experimental comparison of some phenomenological hysteresis models in characterizing hysteresis behavior of shape memory alloy actuators

    , Article Journal of Intelligent Material Systems and Structures ; Volume 23, Issue 12 , 2012 , Pages 1287-1309 ; 1045389X (ISSN) Zakerzadeh, M. R ; Sayyaadi, H ; Sharif University of Technology
    SAGE  2012
    Abstract
    Among the phenomenological hysteresis models, the Preisach model, Krasnosel'skii-Pokrovskii model, and Prandtl-Ishlinskii model have found extensive applications for modeling hysteresis in shape memory alloys and other smart actuators. Since the mathematical complexity of the identification and inversion problem depends directly on the type of phenomenological hysteresis modeling method, choosing a proper phenomenological model among the mentioned models for modeling the hysteretic behavior of shape memory alloy actuators is a task of crucial importance. Moreover, the accuracy of the hysteresis modeling method in characterizing shape memory alloy hysteretic behavior consequently affects the... 

    A thermodynamically-consistent 3 D constitutive model for shape memory polymers

    , Article International Journal of Plasticity ; Volume 35 , 2012 , Pages 13-30 ; 07496419 (ISSN) Baghani, M ; Naghdabadi, R ; Arghavani, J ; Sohrabpour, S ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The ever increasing applications of shape memory polymers have motivated the development of appropriate constitutive models for these materials. In this work, we present a 3 D constitutive model for shape memory polymers under time-dependent multiaxial thermomechanical loadings in the small strain regime. The derivation is based on an additive decomposition of the strain into six parts and satisfying the second law of thermodynamics in Clausius-Duhem inequality form. In the constitutive model, the evolution laws for internal variables are derived during both cooling and heating thermomechanical loadings. The viscous effects are also fully accounted for in the proposed model. Further, we... 

    Chemical kinetic modeling of i-butane and n-butane catalytic cracking reactions over HZSM-5 zeolite

    , Article AIChE Journal ; Volume 58, Issue 8 , 2012 , Pages 2456-2465 ; 00011541 (ISSN) Roohollahi, G ; Kazemeini, M ; Mohammadrezaee, A ; Golhosseini, R ; Sharif University of Technology
    Abstract
    A chemical kinetic model for i-butane and n-butane catalytic cracking over synthesized HZSM-5 zeolite, with SiO 2/Al 2O 3 = 484, and in a plug flow reactor under various operating conditions, has been developed. To estimate the kinetic parameters of catalytic cracking reactions of i-butane and n-butane, a lump kinetic model consisting of six reaction steps and five lumped components is proposed. This kinetic model is based on mechanistic aspects of catalytic cracking of paraffins into olefins. Furthermore, our model takes into account the effects of both protolytic and bimolecular mechanisms. The Levenberg-Marquardt algorithm was used to estimate kinetic parameters. Results from statistical...