Loading...
Search for: escherichia-coli
0.013 seconds
Total 131 records

    A Practical Examination of the Antibacterial and Absorption Effect of Bioceramic Apatite-Coated TiO2 as a Modified Nanophotocatalyst

    , M.Sc. Thesis Sharif University of Technology Azimzadeh Irani, Maryam (Author) ; Gholami, Mohammad Reza (Supervisor) ; Haghighi, Saeed (Co-Advisor)
    Abstract
    Ag / AgCl /TiO2 , 2 Ap / Ag / AgCl /TiO , 2 AgI /TiO and 2 Ap / AgI /TiO were prepared by the deposition-precipitation method on 2TiO (P25) nanoparticles and their photocatalyctic activities have been investigated under visible light and dark environments. Cationic surfactant plus 2 PVPI (topical solution and dry powder) as an iodine ion source and nonionic surfactant plus KI as an iodide ion source were used to prepar 2 AgI /TiO . In less than 30 minutes, 2 AgI /TiO which has been resulted from combination of cationic surfactant and 2 PVPI showed high efficiency on Escherichia coli under visible light when small quantities of it is used . However, AgCl sample prepared with cationic... 

    Synthesis of Zeolite-Based NanoComposites and Investigation of their Catalytic Activities

    , M.Sc. Thesis Sharif University of Technology Padervand, Mohsen (Author) ; Gholami, Mohammad Reza (Supervisor)
    Abstract
    Polyagent photocatalysts based on the zeolite including TiO2, Ag and AgBr prepared by Sol-gel method. Ag and AgBr prevent of electron-hole recombination and enhance photocatalytic activity. Prepared catalysts were characterized by different analysis method including XRD, SEM, EDX, FTIR and BET techniques. Catalyst activities were investigated from two aspects: in first step the activities of catalyst were investigated for degradation of AB92 dye. The effect of different factors such as: catalyst concentration, dye concentration, pH and scavenger (sodium thiosulphate) on efficiency and reaction rate were investigated. The optimazed values for all conditions specified, then catalyst activities... 

    , M.Sc. Thesis Sharif University of Technology Aftabi, Abed (Author) ; Yaghmaei, Soheyla (Supervisor) ; Maghsoudi, Vida (Supervisor)
    Abstract
    This practice investigates about the resistance & sustainability of a sample of available microorganisms in fruit juices vs. a natural anti microbe called vanillin. To be more precisely the anti bacterial characteristic of vanillin has been tested against famous pathogenic organism Escherichia Coli in apple juice. The practice has been experienced for different concentrations of Vanillin, controlling & reducing the microbe concentration in apple synthetic juice. The effect has been investigated by measuring sensitivity of results in two different temperatures one in 8 degree of centigrade & other in 15, in each temperature two PH have been tested (PH = 3.5 & 4.5) 0-40-80 m-molar as 3... 

    Investigation of Effective Parameters on Performance of Microfluidic Microbial Fuel Cell–Microbial Electrolysis Cell Coupled System

    , M.Sc. Thesis Sharif University of Technology Fadakar, Aref (Author) ; Bastani, Dariush (Supervisor) ; Yaghmaei, Soheila (Supervisor) ; Mardanpour, Mohammad Mahdi (Co-Supervisor)
    Abstract
    This study presents the experimental investigation of the microfluidic microbial fuel cell – microbial electrolysis cell coupled system as a bioenergy generator to produce biohydrogen without any external power supply. The effect of microbial fuel cells number (to provide the required potential for microbial electrolysis cell), the type of substrate and its concentration were assessed. The maximum produced hydrogen of 25, 33 and 50 ppm were obtained in flow rate of 200 μl h-1 and glucose concentration of 200 mg l-1 in 1, 2 and 3 stack MFCs, respectively. For urea solution, by combination of 1, 2 and 3 stack MFCs in the flow rate of 200 μl h-1 and the concentration of 800 mg l-1, the maximum... 

    Investigation of the Performance of Microbial Fuel Cell Based on Shewanella Bacteria with the Aim of Nanostructured Materials

    , M.Sc. Thesis Sharif University of Technology Davoudi, Omid (Author) ; Yaghmaei, Soheila (Supervisor) ; Sanaee, Zeinab (Co-Supervisor)
    Abstract
    The development of clean, renewable and alternative sources of fossil fuels has increased in recent years due to various factors such as environmental pollution, reduced fossil fuel resources and increased energy consumption. The application of microbial fuel cells is one of the clean energy production methods using renewable sources such as municipal sewage. The microbial fuel cell converts the chemical energy stored in organic materials into electrical energy and simultaneously purifies the sewage. Increasing current density and power density are the most important challenges for microbial fuel cells. In this study, the two biocatalysts of Shewanella Oneidensis MR1 and Escherichia coli... 

    Optimization for Production & Purification of Asparaginase Enzyme

    , M.Sc. Thesis Sharif University of Technology Dashtban Kenari, Laleh (Author) ; Alemzadeh, Iran (Supervisor) ; Maghsodi, Vida (Supervisor)
    Abstract
    The enzyme L-Asparaginase (L-asparagine amidohydrolase, EC 3.5.1.1) has been thoroughly researched by many researchers worldwide because of its immensely useful medical applications. It can catalyze the hydrolysis of L-asparagine to L-aspartic acid and ammonia that is effective for the cure of leukemia, especially for puerile Acute Lymphocytic Leukemia [ALL] and Lymphosarcomas. The present study discusses the studies carried out for the optimal production of the enzyme from Escherichia coli ATCC 11303. For extraction of the intracellular enzyme, Sonication is more useful method for cell disruption than alkali lysis and enzymatic method. We improved Luria Bertani (LB) media (tryptone 1% w/v,... 

    Synthesis and Experimental Study of Organic-Metal Framework (MOF) Nanophotocatalists with Antibacterial Properties

    , M.Sc. Thesis Sharif University of Technology Rahmati, Ziba (Author) ; Vossoughi, Manouchehr (Supervisor) ; Abdi, Jafar (Co-Supervisor)
    Abstract
    MOFs are new class of materials that are used in different scientific fields because of their hybrid structure. In this project, focused on two specific applications, and aim is synthesis of a nanostructure which has antibacterial and photocatalytic activity. ZIF-8 because of its chemical and physical stability has been studied. For improving antibacterial influence and photocatalytic activity, silver nanoparticles are added to the structure. Magnetic nanoparticles covered by silica were used as core to facilitate separation process, ZIF-8 structure was constructed as shell on SiO2@Fe2O3 nano spheres. Magnetic nanoparticles improving stability of ZIF-8 in aqueous solutions. Synthetic nano... 

    Synthesis and Investigation of Antibacterial Activity of Nanostructures Carbon Nitride g-C3N4 Photocatalyst under Visible Light

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Marzie (Author) ; RoustaAzad, Reza (Supervisor) ; Vosoughi, Manouchehr (Supervisor) ; Padervand, Mohsen (Supervisor)
    Abstract
    Carbon nitride is a compound that has the proper energy gap (2.7 eV) for activities in the visible light. In this research, photocatalysts based on nanoporous Carbon nitride sheets was synthesized with three primary ingredient (urea, melamine and melamine hydrochloride) by pyrolysis method. Ag, Cu, Fe2O3 and Fe3O4 were added to the system to prevent the electron-hole recombination as well as increscent the photocatalytic activity. The chemical bonding state properties and microstructure of the synthesized photocatalysts were investigated by means of XRD, SEM, BET, FTIR, DRS and PL methods. In the first step of the research, the activity of prepared compounds was analyzed by visible light for... 

    Antibacterial Activity of Magnetic Fe3O4/X (X=Ag, Cu, Au) Nanocomposites Modified with Ionic Liquid

    , M.Sc. Thesis Sharif University of Technology karimiasl, Moslem (Author) ; Gholami, Mohammad Reza (Supervisor)
    Abstract
    In this thesis, Fe3O4 magnetic nanoparticles were produced using co-precipitation method. The surface of these magnetic nanoparticles is modified by ionic-liquid groups, and then coated with Cu, Au and Ag metals. These nanoparticles were unstable before their surface modification, so that they were easily agglomerated. However, after their surface is modified with ionic-liquid, they become very stable and are easily solved in polar and non-polar solvents. This solubility depends on the alkyls groups connected to the ionic-liquid. Magnetic nano composites Fe3O4/X (X=Ag, Cu, Au) modified by ionic-liquid are prepared by absorbing Cu(NO3)2, HAuClO4 and AgNO3 salts on the surface of modified... 

    Synthesis of Fe3O4 Core-Shell Nanoparticles; Embedding Cu, Ag, Au Metals in the Surfaces that Were Modified by PPG and PEG Polymers and Investigation of Antibacterial Properties of These Composites

    , M.Sc. Thesis Sharif University of Technology Kiani Karanji, Ahmad (Author) ; Gholami, Mohammad Reza (Supervisor) ; Haghighi, Saeed (Co-Advisor)
    Abstract
    In this project, Fe3O4 magnetic nanoparticles were prepared by co-precipitation method. For protecting them against oxidation and also avoiding from direct contact between core and additional materials that probably makes unwanted reactions, the surface of nanoparticles were coated by SiO2 layer. Being easy to modify and having the control of interactions between nanoparticles are the advantages of coating nanoparticles with silica. The obtained Fe3O4@SiO2 core-shell nanoparticles were covered by two types of polymer (PPG and PEG). The basis of the composite was characterized by VSM, TGA, SEM, XRD, and FT-IR analytical methods.
    The antibacterial activities of Copper, Silver and Gold... 

    Synthesis, Characterization and Applications of Antibacterial Metal-Organic Framework Nanocomposites for Water Remediation

    , M.Sc. Thesis Sharif University of Technology Talebi Deylamani, Sara (Author) ; Borghei, Mehdi (Supervisor) ; Yaghmaei, Soheila (Supervisor) ; Ghobadi Nejad, Zahra (Co-Supervisor)
    Abstract
    Contaminants in drinking water, including microbial contaminants, have a great impact on the health of people in the community and can seriously threaten public health. In recent years, diseases caused by pathogenic bacteria due to the consumption of contaminated water have led to many deaths. As a result, water treatment has been one of the most important human concerns. Among the new water treatment technologies, metal-organic(MOF) frameworks are a new generation of porous materials that have properties such as high surface area, water stability and functionality due to their dual structure. As a result, they are widely used today in various scientific fields, including water purification.... 

    Synthesis of Antibacterial Nanoparticle for Packaging Food Application

    , M.Sc. Thesis Sharif University of Technology Radan, Niloofar (Author) ; Yaghmaei, Soheila (Supervisor) ; Ghobadinezhad, Zahra (Co-Supervisor)
    Abstract
    Food spoilage cased by food-borne pathogens and microorganisms is a serious problem in the food and packaging industry. Then, the demand for antibacterial agents in food packaging is growing. The antibacterial efficacy of some nanocomposites has been recognized and exploited in various industries, including the packaging industry. Also, metal organic frameworks due to their porous structure, are used in various fields such as food packaging. The purpose of this work, is synthesize hybrid nanocomposite that have promising antibacterial activity for preparation of food packaging films. Carboxymethyl cellulose is a derivative of cellulose fiber. The use of carboxymethyl cellulose as... 

    A continuous flow microfluidic device based on contactless dielectrophoresis for bioparticles enrichment

    , Article Electrophoresis ; Volume 39, Issue 3 , 2018 , Pages 445-455 ; 01730835 (ISSN) Rahmani, A ; Mohammadi, A. A ; Kalhor, H. R ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    In recent years, applications of dielectrophoresis-based platforms have been recognized as effective and dependable approach to separate cells and bioparticles, suspended in different carrier fluids, based on particle size and electrical properties. In this study, a microfluidic device was fabricated by an unprecedented electrode pattern, and several experiments were performed to enrich samples including either of yeast, Escherichia coli, or latex particles. A chemical deposition-based method was employed for fabrication of microelectrodes, inducing nonuniform electric field required for dielectrophoresis-based separation. One major advantage of our employed method is low fabrication cost,... 

    Synthesis of nanobentonite–poly(vinyl alcohol)–bacterial cellulose nanocomposite by electrospinning for wound healing applications

    , Article Physica Status Solidi (A) Applications and Materials Science ; Volume 217, Issue 6 , 2020 Zeaiean Firouzabadi, P ; Ghanbari, H ; Mahmoudi, N ; Haramshahi, S. M. A ; Javadpour, J ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Polymer-based composites are used for wound healing applications. This work aims to prepare an inorganic-polymer nanocomposite based on bentonite, poly(vinyl alcohol), and bacterial cellulose by electrospinning for wound healing. The nanocomposite is synthesized using a solution intercalation technique, with 1–2 wt% nanobentonite concentration variation. The effects of commercial and laboratory-synthesized nanobentonite as well as the extract of the green walnut shell (EGWS) are examined and characterized by different techniques. The addition of nanobentonite increases the average size of fibers and tensile strength up to 200 nm and more than 15 MPa, respectively, due to the presence of... 

    Magnetic metal nanoparticles decorated ionic liquid with excellent antibacterial activity

    , Article Journal of Nanostructures ; Volume 10, Issue 3 , 2020 , Pages 613-623 Salari, H ; Karimi Asl, M ; Padervand, M ; Gholami, M. R ; Sharif University of Technology
    University of Kashan  2020
    Abstract
    Fe3O4 magnetic structure was synthesized with co-precipitation method. Surface of magnetic core was modified with hydrophobic BMIM[PF6] ionic liquid. The samples became antibacterial by loading gold, copper and silver nanoparticles and denoted as Fe3O4/IL/X (X=Ag, Au, Cu). X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), thermal gravimetric analysis (TGA), Atomic absorption spectroscopy (AAS), Fourier transform infrared (FTIR) and vibration sample magnetometer (VSM) technics were applied for catalysts characterization, metal concentration analysis and morphology monitoring. Modified nanostructures were used for inactivation of Escherichia coli as... 

    Synthesis photocatalytic TiO2/ZnO nanocomposite and investigation through anatase, wurtzite and ZnTiO3 phases antibacterial behaviors

    , Article Journal of Nano Research ; Volume 51 , 2018 , Pages 69-77 ; 16625250 (ISSN) Mohammadi, H ; Ghorbani, M ; Sharif University of Technology
    Trans Tech Publications Ltd  2018
    Abstract
    Titanium dioxide is prepared by sol gel method from titanium tetraisopropoxide (TTIP) as precursor and likewise zinc oxide is prepared by sol gel method from zinc acetate dehydrate (ZAD) as precursor. The composite sols are prepared in three different molar ratios 90TiO2:10ZnO, 70TiO2:30ZnO and 50TiO2:50ZnO. Thin film deposition is carried out by dip coating technique. Crystal structure, surface morphology and photocatalytic activity of the prepared nanocomposite thin films are investigated. The antibacterial activity of the prepared nanocomposite thin film against E-coli ATCC 25922 bacteria is examined by placing the thin film in standard aqueous E-coli medium under UV light for 1, 2, 3 and... 

    Facile template-free synthesis of the CuO microflowers with enhanced photocatalytic properties

    , Article Materials Research Innovations ; 2016 , Pages 1-5 ; 14328917 (ISSN) Ahmadi, M ; Padervand, M ; Vosoughi, M ; Roosta Azad, R ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    CuO flower-like microcrystals, prepared by a facile template-free thermal method, showed incredible photocatalytic activity towards degradation of Acid Blue 92 (AB92), an organic wastewater, Escherichia coli and Staphylococcus aureus pathogenic bacteria under visible light. The products were well characterised by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), Fourier transform infrared (FTIR), photoluminescence spectroscopy (PL) and diffuse reflectance spectra (DRS) analysis methods. The XRD pattern of the products well confirmed the formation of copper oxide crystalline phase without any other impurities. The results of the photocatalytic... 

    Optimization of l-asparaginase immobilization onto calcium alginate beads

    , Article Chemical Engineering Communications ; Volume 204, Issue 2 , 2017 , Pages 216-220 ; 00986445 (ISSN) Bahraman, F ; Alemzadeh, I ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    In this study, anti-leukemic enzyme L-asparaginase (E.C.3.5.1.1) from Escherichia coli ATCC 11303 was modified by the microencapsulation technique onto calcium alginate beads. Using response surface methodology (RSM), a three-level full factorial design, the values of concentration of sodium alginate, concentration of calcium chloride, and enzyme loading were investigated to obtain the highest residual L-asparaginase (L-ASNase) activity % (immobilized enzyme activity/free enzyme activity). The effects of the studied factors on immobilization were evaluated The predicted values by the model were close to the experimental values, indicating suitability of the model. The results presented that... 

    Nanomechanical properties of MscL α helices: A steered molecular dynamics study

    , Article Channels ; Volume 11, Issue 3 , 2017 , Pages 209-223 ; 19336950 (ISSN) Bavi, N ; Bavi, O ; Vossoughi, M ; Naghdabadi, R ; Hill, A. P ; Martinac, B ; Jamali, Y ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    Gating of mechanosensitive (MS) channels is driven by a hierarchical cascade of movements and deformations of transmembrane helices in response to bilayer tension. Determining the intrinsic mechanical properties of the individual transmembrane helices is therefore central to understanding the intricacies of the gating mechanism of MS channels. We used a constant-force steered molecular dynamics (SMD) approach to perform unidirectional pulling tests on all the helices of MscL in M. tuberculosis and E. coli homologs. Using this method, we could overcome the issues encountered with the commonly used constant-velocity SMD simulations, such as low mechanical stability of the helix during... 

    PLGA/TiO2 nanocomposite scaffolds for biomedical applications: Fabrication, photocatalytic, and antibacterial properties

    , Article BioImpacts ; Volume 11, Issue 1 , 2021 , Pages 45-52 ; 22285652 (ISSN) Pelaseyed, S. S ; Madaah Hosseini, H. R ; Nokhbedehghan, Z ; Samadikuchaksaraei, A ; Sharif University of Technology
    Tabriz University of Medical Sciences  2021
    Abstract
    Introduction: Porous 3D scaffolds synthesized using biocompatible and biodegradable materials could provide suitable microenvironment and mechanical support for optimal cell growth and function. The effect of the scaffold porosity on the mechanical properties, as well as the TiO2 nanoparticles addition on the bioactivity, antimicrobial, photocatalytic, and cytotoxicity properties of scaffolds were investigated. Methods: In the present study, porous scaffolds consisting poly (lactide-co-glycolide) (PLGA) containing TiO2 nanoparticles were fabricated via air-liquid foaming technique, which is a novel method and has more advantages due to not using additives for nucleation compared to former...