Loading...
Search for: electrochemical-analysis
0.011 seconds
Total 47 records

    Synthesis and Study of Electron Transport through a Self-Assembled Monolayer of Thiol-End-Functionalized Tetraphenylporphyrines and Metalo-Tetraphenylporphyrines and Electrochemical Analysis of Dopamine and Ascorbic Acid with this SAMs

    , M.Sc. Thesis Sharif University of Technology Sanaei, Mahsa (Author) ; Mohammadi Boghaei, Davar (Supervisor)
    Abstract
    Self-Assembled Monolayer (SAM) is the first step in all surface engineering and assembly processes. It is used in sensor fabrication, memories and molecular recognition and optoelectronic devises as an active surface for patterning and chemical architecting of solid substrates. Tetraphenyl porphyrins because of their high stability and uniqe electronic and optic properties, that comes from their conjugate π electrons, easily can be used in these monolayers. Moreover they have a wide application because of their ability for coordination with metals and accepting substituents with electron donating and withdrawing properties. Electron transport through these layars which attach to the surface... 

    ZnO nanoparticle/nanorod-based label-free electrochemical immunoassay for rapid detection of MMP-9 biomarker

    , Article Biochemical Engineering Journal ; Volume 164 , 2020 Shabani, E ; Abdekhodaie, M. J ; Mousavi, S. A ; Taghipour, F ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A label-free electrochemical biosensor was developed for the rapid detection of the matrix metalloproteinase 9 (MMP-9) biomarker on the basis of antibody immobilizing on the zinc oxide (ZnO) nanoparticle and ZnO nanorod electrodes. The charge transfer resistance (Rct) of the electrodes was used as the indicator for MMP-9 concentration, which was obtained through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The ZnO nanorod-based biosensor exhibited linear behavior in the MMP-9 concentration range of 1–1000 ng/ml, which is a wider range than the available concentration ranges for most of the conventional methods. The biosensor sensitivity was 32.5 μA/(decade × cm2)... 

    Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles

    , Article Materials Science and Engineering C ; Volume 58 , 2016 , Pages 1098-1104 ; 09284931 (ISSN) Asadian, E ; Iraji Zad, A ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable... 

    Voltammetric behavior and determination of trace amounts of omeprazole using an edge-plane pyrolytic graphite electrode

    , Article Iranian Journal of Pharmaceutical Research ; Volume 14, Issue 2 , Spring , 2015 , Pages 465-471 ; 17350328 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Bayat, M ; Ghorbani Bidkorbeh, F ; Sharif University of Technology
    Iranian Journal of Pharmaceutical Research  2015
    Abstract
    The voltammetric performance of edge-plane pyrolytic graphite (EPG) electrode via adsorptive stripping voltammetry was investigated for study of the electrochemical behavior of omeprazole (OMZ) in aqueous solution. The results revealed that the oxidation of OMZ is an irreversible pH-dependent process that proceeds with the transfer of one electron and one proton in an adsorption-controlled mechanism. The determination conditions, such as the pH values of the supporting electrolyte, accumulation time and scan rate were optimized. Simplicity, high reproducibility and low detection limit (3 nM) of the electrode response as well as wide linear range (0.01 to 4.0 µM) can be stated as significant... 

    Three-dimensional hybrid of iron–titanium mixed oxide/nitrogen-doped graphene on Ni foam as a superior electrocatalyst for oxygen evolution reaction

    , Article Journal of Colloid and Interface Science ; Volume 563 , 15 March , 2020 , Pages 241-251 Mousavi, D. S ; Asen, P ; Shahrokhian, S ; Irajizad, A ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    Growing demands for clean and renewable energy technologies have sparked broad research on the development of highly efficient and stable non-noble metal electrocatalysts for oxygen evolution reaction (OER). In this regard, in the present work a three-dimensional Fe2TiO5/nitrogen-doped graphene (denoted as 3D FTO/NG) hybrid electrocatalyst was synthesized via a facile in-situ process using a hydrothermal method. Structural characterization of the prepared nanocomposite is performed by various techniques e.g. field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) analysis, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy spectra (XPS),... 

    Synthesis and electrochemical characterization of sol-gel-derived RuO 2/carbon nanotube composites

    , Article Journal of Solid State Electrochemistry ; Vol. 18, Issue 4 , April , 2014 , pp. 993-1003 ; Online ISSN: 1433-0768 Kahram, M ; Asnavandi, M ; Dolati, A ; Sharif University of Technology
    Abstract
    Ruthenium oxide was coated on multiwalled carbon nanotubes (MWCNTs) to obtain nanocomposite electrode which has a good response to the pH. To synthesize this electrode, gold and cobalt were coated on a stainless steel 304 substrates, respectively, and then, vertically aligned carbon nanotubes were grown on the prepared substrates by chemical vapor deposition. Gold reduced activity of the stainless steel, while cobalt served as a catalyst for growth of the carbon nanotube. Ruthenium oxide was then coated on MWCNTs via sol-gel method. At last, different techniques were used to characterize the properties of synthesized electrode including scanning electron microscopy (SEM), transmission... 

    Synthesis and characterization of new triphenylamine-based dyes with novel anchoring groups for dye-sensitized solar cell applications

    , Article Journal of Materials Science: Materials in Electronics ; Volume 28, Issue 2 , 2017 , Pages 1859-1868 ; 09574522 (ISSN) Salimi Beni, A ; Hosseinzadeh, B ; Azari, M ; Ghahary, R ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Three new chromophores based on the triphenylamine (MM, DM, DN) with various novel electron withdrawing anchoring groups have been synthesized for use in dye-sensitized solar cells (DSSCs). The sensitizers were characterized by 1H and 13C NMR, Mass, UV–Vis, and electrochemical analysis. The HOMO and LUMO electron distributions of the sensitizers were calculated using density functional theory on a B3LYP level for geometry optimization. The DSSC device based on DM dye showed the best photovoltaic performance among MM and DN dyes: maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 98 %, short circuit current (JSC) of 4.58 mA/cm2, open circuit voltage (VOC) of... 

    Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and Au nanoparticles

    , Article Analyst ; Volume 136, Issue 11 , 2011 , Pages 2322-2329 ; 00032654 (ISSN) Mahshid, S ; Li, C ; Mahshid, S. S ; Askari, M ; Dolati, A ; Yang, L ; Luo, S ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    A simple modified TiO2 nanotubes electrode was fabricated by electrodeposition of Pd, Pt and Au nanoparticles. The TiO2 nanotubes electrode was prepared using the anodizing method, followed by modifying Pd nanoparticles onto the tubes surface, offering a uniform conductive surface for electrodeposition of Pt and Au. The performance of the modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry methods. The Au/Pt/Pd/TiO2 NTs modified electrode represented a high sensitivity towards individual detection of dopamine as well as simultaneous detection of dopamine and uric acid using 0.1 M phosphate buffer solution (pH 7.00) as the base solution. In both case,... 

    Preparation of novel and highly active magnetic ternary structures (metal-organic framework/cobalt ferrite/graphene oxide) for effective visible-light-driven photocatalytic and photo-fenton-like degradation of organic contaminants

    , Article Journal of Colloid and Interface Science ; Volume 602 , 2021 , Pages 73-94 ; 00219797 (ISSN) Bagherzadeh, B ; Kazemeini, M ; Mahmoodi, N. M ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Herein, MIL-101(Fe), CoFe2O4, novel binary (MIL-101(Fe)/CoFe2O4, MIL-101(Fe)/GO and CoFe2O4/GO), and ternary (MIL-101(Fe)/CoFe2O4/(3%)GO and MIL-101(Fe)/CoFe2O4/(7%)GO) magnetic composites based upon the MIL-101(Fe) were synthesized. The XRD, FESEM, TEM, EDX, BET-BJH, FTIR, VSM, DRS, PL, EIS and other electrochemical analyses were applied to characterize samples. The MIL/CoFe2O4/(3%)GO demonstrated the best performance compared to other samples for visible light photocatalytic and photo-Fenton-like degradation of Direct Red 23 (DtR-23), Reactive Red 198 (ReR-198) dyes as well as Tetracycline Hydrochloride (TC-H) antibiotic. Degradation of dyes using the ternary composite after 70 min of... 

    Pd-Au nanoparticle decorated carbon nanotube as a sensing layer on the surface of glassy carbon electrode for electrochemical determination of ceftazidime

    , Article Materials Science and Engineering C ; Vol. 34, issue. 1 , 2014 , pp. 318-325 ; ISSN: 09284931 Shahrokhian, S ; Salimian, R ; Rastgar, S ; Sharif University of Technology
    Abstract
    A simple electrodeposition method is employed to construct a thin film modifier of palladium-gold nanoparticles (Pd-AuNPs) decorated multi-walled carbon nanotube (MWCNT) on the surface of glassy carbon electrode (GCE). Morphology and property of Pd-AuNPs-MWCNT have been examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Electrochemical performance of Pd-AuNPs-MWCNT/GCE for detection of ceftazidime (CFZ) has been investigated by cyclic voltammetry (CV). This nanostructured film modified electrode effectively exhibited enhanced properties for detection of ceftazidime (CFZ). The effects of various experimental variables such as, the amount of casted MWCNT,... 

    Origin of apparent light-enhanced and negative capacitance in perovskite solar cells

    , Article Nature Communications ; Volume 10, Issue 1 , 2019 ; 20411723 (ISSN) Ebadi, F ; Taghavinia, N ; Mohammadpour, R ; Hagfeldt, A ; Tress, W ; Sharif University of Technology
    Nature Publishing Group  2019
    Abstract
    So-called negative capacitance seems to remain an obscure feature in the analysis of the frequency-dependent impedance of perovskite solar cells. It belongs to one of the puzzling peculiarities arising from the mixed ionic-electronic conductivity of this class of semiconductor. Here we show that apparently high capacitances in general (positive and negative) are not related to any capacitive feature in the sense of a corresponding charge accumulation. Instead, they are a natural consequence of slow transients mainly in forward current of the diode upon ion displacement when changing voltage. The transient current leads to a positive or negative ‘capacitance’ dependent on the sign of its... 

    Optimization of solid-phase microextraction of volatile phenols in water by a polyaniline-coated Pt-fiber using experimental design

    , Article Analytica Chimica Acta ; Volume 581, Issue 1 , 2007 , Pages 71-77 ; 00032670 (ISSN) Mousavi, M ; Noroozian, E ; Jalali Heravi, M ; Mollahosseini, A ; Sharif University of Technology
    2007
    Abstract
    Solid-phase microextraction (SPME) coupled to gas chromatography (GC) was applied to the extraction of phenol and some of its volatile derivatives in water samples. The SPME fiber consisted of a thin layer of polyaniline, which was electrochemically coated on a fine Pt wire. The stability of the coating was such that it could be used at temperatures as high as 325 °C, without any deterioration. The effects of various parameters affecting the extraction efficiency were studied, simultaneously. From these, optimization of the extraction temperature, extraction time, coating thickness, sample pH, salt concentration and desorption time was carried out by means of a (26-2) fractional factorial... 

    Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances

    , Article Journal of Colloid and Interface Science ; Volume 542 , 2019 , Pages 325-338 ; 00219797 (ISSN) Naderi, L ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2019
    Abstract
    Wire-shaped micro-supercapacitors attracted extensive attentions in next-generation portable and wearable electronics, due to advantages of miniature size, lightweight and flexibility. Herein, NiMoO 4 nanorods supported on Ni film coated Cu wire are successfully fabricated thorough direct deposition of Ni film onto Cu wire as the conductive substrate, followed by growth of the NiMoO 4 nanorods on Ni film coated Cu wire substrate by means a hydrothermal annealing process. The prepared 3D, porous electrode demonstrates extremely high areal specific capacitance of 12.03F cm −2 at the current density of 4 mA cm −2 and retained capacitance of 8.23 F cm −2 at a much higher current density of 80... 

    Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: Layer-by-layer electrochemical preparation, characterization and rifampicin sensory application

    , Article Talanta ; Vol. 119 , 2014 , pp. 156-163 ; ISSN: 00399140 Rastgar, S ; Shahrokhian, S ; Sharif University of Technology
    Abstract
    Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of nickel hydroxide nanoparticle-reduced graphene oxide nanosheets (Ni(OH)2-RGO) on a graphene oxide (GO) film pre-cast on a glassy carbon electrode surface. The surface morphology and nature of the nano-hybrid film (Ni(OH)2-RGO) was thoroughly characterized by scanning electron and atomic force microscopy, spectroscopy and electrochemical techniques. The modified electrode appeared as an effective electro-catalytic model for analysis of rifampicin (RIF) by using linear sweep voltammetry (LSV). The prepared modified electrode exhibited a distinctly higher activity... 

    Multilayered mesoporous composite nanostructures for highly sensitive label-free quantification of cardiac troponin-i

    , Article Biosensors ; Volume 12, Issue 5 , 2022 ; 20796374 (ISSN) Saeidi, M ; Amidian, M. A ; Sheybanikashani, S ; Mahdavi, H ; Alimohammadi, H ; Syedmoradi, L ; Mohandes, F ; Zarrabi, A ; Tamjid, E ; Omidfar, K ; Simchi, A ; Sharif University of Technology
    MDPI  2022
    Abstract
    Cardiac troponin-I (cTnI) is a well-known biomarker for the diagnosis and control of acute myocardial infarction in clinical practice. To improve the accuracy and reliability of cTnI electrochemical immunosensors, we propose a multilayer nanostructure consisting of Fe3O4-COOH labeled anti-cTnI monoclonal antibody (Fe3O4-COOH-Ab1 ) and anti-cTnI polyclonal antibody (Ab2 ) conjugated on Au-Ag nanoparticles (NPs) decorated on a metal–organic framework (Au-Ag@ZIF-67-Ab2 ). In this design, Fe3O4-COOH was used for separation of cTnI in specimens and signal amplification, hierarchical porous ZIF-67 extremely enhanced the specific surface area, and Au-Ag NPs synergically promoted the conductivity... 

    Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir

    , Article Materials Science and Engineering C ; Volume 53 , 2015 , Pages 134-141 ; 09284931 (ISSN) Shahrokhian, S ; Azimzadeh, M ; Amini, M. K ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    A novel voltammetric sensor based on glassy carbon electrode (GCE) modified with a thin film of multi-walled carbon nanotubes (MWCNTs) coated with an electropolymerized layer of tiron-doped polypyrrole was developed and the resulting electrode was applied for the determination of acyclovir (ACV). The surface morphology and property of the modified electrode were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy techniques. The electrochemical performance of the modified electrode was investigated by means of linear sweep voltammetry (LSV). The effect of several experimental variables, such as pH of the supporting electrolyte, drop size of... 

    Mining the potential of label-free biosensors for in vitro antipsychotic drug screening

    , Article Biosensors ; Volume 8, Issue 1 , 2018 ; 20796374 (ISSN) Kilic, T ; Soler, M ; Fahimi Kashani, N ; Altug, H ; Carrara, S ; Sharif University of Technology
    MDPI AG  2018
    Abstract
    The pharmaceutical industry is facing enormous challenges due to high drug attribution rates. For the past decades, novel methods have been developed for safety and efficacy testing, as well as for improving early development stages. In vitro screening methods for drug-receptor binding are considered to be good alternatives for decreasing costs in the identification of drug candidates. However, these methods require lengthy and troublesome labeling steps. Biosensors hold great promise due to the fact that label-free detection schemes can be designed in an easy and low-cost manner. In this paper, for the first time in the literature, we aimed to compare the potential of label-free optical and... 

    Mesoporous nanostructures of NiCo-LDH/ZnCo2O4 as an efficient electrocatalyst for oxygen evolution reaction

    , Article Journal of Colloid and Interface Science ; Volume 604 , 2021 , Pages 832-843 ; 00219797 (ISSN) Shamloofard, M ; Shahrokhian, S ; Amini, M. K ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Increasing energy demands for pollution-free and renewable energy technologies have stimulated intense research on the development of inexpensive, highly efficient, and stable non-noble metal electrocatalysts for oxygen evolution reaction (OER). In this study, a superior OER performance was achieved using a tri-metallic (Zn, Co, Ni) high-performance electrocatalyst. We successfully fabricated a peony-flower-like hierarchical ZnCo2O4 through an additive-free hydrothermal reaction followed by heat treatment. Then NiCo-LDH (layered double hydroxides) nano-flakes was electrodeposited on the ZnCo2O4/GCE surface to prepare NiCo-LDH/ZnCo2O4/GCE which was used as electrode for OER. The structure and... 

    Laboratory detection methods for the human coronaviruses

    , Article European Journal of Clinical Microbiology and Infectious Diseases ; Volume 40, Issue 2 , 2021 , Pages 225-246 ; 09349723 (ISSN) Shabani, E ; Dowlatshahi, S ; Abdekhodaie, M. J ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Coronaviruses are a group of envelop viruses which lead to diseases in birds and mammals as well as human. Seven coronaviruses have been discovered in humans that can cause mild to lethal respiratory tract infections. HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1 are the low-risk members of this family and the reason for some common colds. Besides, SARS-CoV, MERS-CoV, and newly identified SARS-CoV-2, which is also known as 2019-nCoV, are the more dangerous viruses. Due to the rapid spread of this novel coronavirus and its related disease, COVID-19, a reliable, simple, fast, and low-cost detection method is necessary for patient diagnosis and tracking worldwide. Human coronaviruses detection... 

    Interpretation of the electrochemical response of a multi-population biofilm in a microfluidic microbial fuel cell using a comprehensive model

    , Article Bioelectrochemistry ; Volume 128 , 2019 , Pages 39-48 ; 15675394 (ISSN) Mardanpour, M. M ; Saadatmand, M ; Yaghmaei, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The present study investigates the diversification and dynamic behavior of a multi-population microfluidic microbial fuel cell (MFC) as a biosensor. The cost effective microfluidic MFC coupled to a comprehensive model, presents a novel platform for monitoring chemical and biological phenomena. The importance of competition among different microbial groups, hierarchical biochemical processes, bacterial chemotaxis and different mechanisms of electron transfer were significant considerations in the present model. The validation of the model using experimental data from a microfluidic MFC shows an appropriate match with the hierarchal biodegradation processes of a complex substrate as well as...