Loading...
Search for: dna
0.012 seconds
Total 173 records

    Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems

    , Article Journal of Biomedical Science ; Vol. 21, issue. 1 , July , 2014 ; ISSN: 10217770 Tahamtan, A ; Ghaemi, A ; Gorji, A ; Kalhor, H. R ; Sajadian, A ; Tabarraei, A ; Moradi, A ; Atyabi, F ; Kelishadi, M ; Sharif University of Technology
    Abstract
    Cervical cancer is the second-most-common cause of malignancies in women worldwide, and the oncogenic activity of the human papilloma virus types (HPV) E7 protein has a crucial role in anogenital tumors. In this study, we have designed a therapeutic vaccine based on chitosan nanodelivery systems to deliver HPV-16 E7 DNA vaccine, considered as a tumor specific antigen for immunotherapy of HPV-associated cervical cancer. We have developed a Nano-chitosan (NCS) as a carrier system for intramuscular administration using a recombinant DNA vaccine expressing HPV-16 E7 (NCS-DNA E7 vaccine). NCS were characterized in vitro for their gene transfection ability. Results: The transfection of CS-pEGFP... 

    DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode

    , Article Analytica Chimica Acta ; Vol. 836, issue , July , 2014 , p. 34-44 ; ISSN: 00032670 Fayazfar, H ; Afshar, A ; Dolati, M ; Dolati, A ; Sharif University of Technology
    Abstract
    For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended... 

    Simulation of mixed electroosmotic/pressure-driven flows by utilizing dissipative particle dynamics

    , Article Microfluidics and Nanofluidics ; Vol. 17, issue. 1 , July , 2014 , pp. 199-215 ; ISSN: 16134982 Mehboudi, A ; Noruzitabar, M ; Mehboudi, M ; Sharif University of Technology
    Abstract
    In this paper, we present an extension of dissipative particle dynamics method in order to study the mixed electroosmotic/pressure-driven micro- or nano-flows. This method is based on the Poisson-Boltzmann equation and has a great potential to resolve the electric double layer (EDL). Hence, apart from studying the bulk flow, it also provides a strong capability in order to resolve the complex phenomena occur inside the EDL. We utilize the proposed method to study the pure electroosmotic and also the mixed electroosmotic/pressure-driven flow through the straight micro-/nano-channels. The obtained results are in good agreement with the available analytical solutions. Furthermore, we study the... 

    DNA and RNA extractions from eukaryotic and prokaryotic cells by graphene nanoplatelets

    , Article RSC Advances ; Vol. 4, issue. 105 , 2014 , p. 60720-60728 Hashemi, E ; Akhavan, O ; Shamsara, M ; Valimehr, S ; Rahighi, R ; Sharif University of Technology
    Abstract
    Graphene nanoplatelets with lateral dimensions of ∼50-200 nm and thicknesses <2 nm were utilized for the extraction of nucleic acids (NAs) from eukaryotic and prokaryotic cells. The graphene nanoplatelets (both chemically exfoliated graphene oxide nanoplatelets and hydrazine-reduced graphene oxide nanoplatelets) successfully extracted plasmid DNA (pDNA) from Escherichia coli bacteria, comparable to a conventional phenol-chloroform (PC) method. Furthermore, it was found that the yield of graphene nanoplatelets in genomic DNA (gDNA) and RNA extractions from embryonic stem cells (ESCs) was also comparable to the yield of the conventional methods. The effects of the graphene nanoplatelets on... 

    Fabrication of a modified electrode based on Fe3 O4 NPs/MWCNT nanocomposite: Application to simultaneous determination of guanine and adenine in DNA

    , Article Bioelectrochemistry ; Volume 86 , 2012 , Pages 78-86 ; 15675394 (ISSN) Shahrokhian, S ; Rastgar, S ; Amini, M. K ; Adeli, M ; Sharif University of Technology
    Abstract
    Multi-walled carbon nanotubes decorated with Fe 3O 4 nanoparticles (Fe 3O 4NPs/MWCNT) were prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electro-oxidation of adenine and guanine on the modified electrode were investigated by linear sweep voltammetry. The results indicate a remarkable increase in the oxidation peak currents together with negative shift in the oxidation peak potentials for both adenine and guanine, in comparison to the bare glassy carbon electrode (GCE). The surface morphology and nature of the composite film deposited on GCE were characterized by transmission electron microscopy, atomic force microscopy,... 

    Effect of cation radical formation on reactivity and acidity enhancement of cytosine nucleobase: Natural bond orbital and atom in molecule analysis

    , Article Journal of Theoretical and Computational Chemistry ; Volume 11, Issue 2 , 2012 , Pages 313-327 ; 02196336 (ISSN) Tehrani, Z. A ; Javan, M. J ; Fattahi, A ; Hashemi, M. M ; Sharif University of Technology
    Abstract
    The radical cations of DNA constituents generated by the ionizing radiation initiate an alteration of the bases, which is one of the main types of cytotoxic DNA lesions. These cation radical spices are known for their role in producing nucleic acid strand break. In this study, the gas-phase intrinsic chemical properties of the gaseous radical cations of cytosine and its base pair with guanine were examined by employing density functional theory (B3LYP) with the 6-311++G(d,p) basis set. Structures, geometries, adiabatic ionization energies, adiabatic electron affinities, charge distributions, molecular orbital analysis and proton-transfer process of these molecules were investigated. The... 

    Calculation of melting temperature and transition curve for dickerson DNA dodecamer on the basis of configurational entropy, hydrogen bonding energy, and heat capacity: A molecular dynamics simulation study

    , Article Journal of the Iranian Chemical Society ; Volume 8, Issue 3 , 2011 , Pages 708-716 ; 1735207X (ISSN) Izanloo, C ; Parsafar, G. A ; Abroshan, H ; Akbarzade, H ; Sharif University of Technology
    Abstract
    A familiarity with denaturation process is highly significant in understanding the DNA replication, manipulation, and interactions involving DNA double helix stability. We have performed molecular dynamics simulation on B-DNA duplex (CGCGAATTGCGC) at different temperatures. At each temperature, configurational entropy was estimated using the covariance matrix of atom-positional fluctuations. By plotting the configuration entropy versus temperature, we calculated the melting temperature which was found to be 329.7 K. We also calculated the hydrogen bonding energy and heat capacity for the atoms participating in the hydrogen bonding between two strands of DNA. Moreover, their temperature... 

    Nonlocal interactions in DNA molecules at nano-scale

    , Article Scientia Iranica ; Volume 17, Issue 1 F , 2010 , Pages 23-26 ; 10263098 (ISSN) Eslami Mossallam, B ; Ejtehadi, M. R ; Sharif University of Technology
    Abstract
    In this paper, we try to explain the origin of the anomalous elastic behavior of nanometersized DNA molecules, which has been observed in all-atom molecular dynamic simulations [A.K. Mazur, Biophys. J. 2006]. It is shown that this anomalous behavior is a consequence of nonlocal interactions between DNA base pairs and the intrinsic curvature of DNA. A nonlocal harmonic elastic rod model is proposed, which can successfully describe the elastic behavior of short DNA molecules  

    Influence of heavy nanocrystals on spermatozoa and fertility of mammals

    , Article Materials Science and Engineering C ; Volume 69 , 2016 , Pages 52-59 ; 09284931 (ISSN) Akhavan, O ; Hashemi, E ; Zare, H ; Shamsara, M ; Taghavinia, N ; Heidari, F ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In recent years, quantum dots (QDs) have been widely used in upcoming nanotechnology-based solar cells, light-emitting diodes and even bioimaging, due to their tunable optical properties and excellent quantum yields. But, such nanostructures are currently constituted by heavy elements which can threat the human health and living environment. Hence, in this work, the in vivo effects of CdTe nanocrystals (NCs) (as one of the promising QDs) on spermatozoa of male mice and subsequently on fertility of female mice were investigated, for the first time. To do this, CdTe NCs were synthesized through an environment-friendly (aqueous-based solution) method. The sperm cells presented a high potential... 

    Toward chemical perfection of graphene-based gene carrier via ugi multicomponent assembly process

    , Article Biomacromolecules ; Volume 17, Issue 9 , 2016 , Pages 2963-2971 ; 15257797 (ISSN) Rezaei, A ; Akhavan, O ; Hashemi, E ; Shamsara, M ; Sharif University of Technology
    American Chemical Society 
    Abstract
    The graphene-based materials with unique, versatile, and tunable properties have brought new opportunities for the leading edge of advanced nanobiotechnology. In this regard, the use of graphene in gene delivery applications is still at early stages. In this study, we successfully designed a new complex of carboxylated-graphene (G-COOH) with ethidium bromide (EtBr) and used it as a nanovector for efficient gene delivery into the AGS cells. G-COOH, with carboxyl functions on its surface, in the presence of EtBr, formaldehyde, and cyclohexylisocyanide were participated in Ugi four component reaction to fabricate a stable amphiphilic graphene-EtBr (AG-EtBr) composite. The coupling reaction was... 

    The characterization of proteins involved in toxic metal resistance of a bacterial strain isolated from mine site using a proteomic approach

    , Article Pollution Research ; Volume 28, Issue 3 , 2009 , Pages 337-343 ; 02578050 (ISSN) Nemati, F ; Arabian, D ; Roostaazad, R ; Gade, W. N ; Shitole, M. G ; Sharif University of Technology
    Abstract
    We investigated the response of a bacterial strain isolated from low grade complex zinc and lead sulfide mines to metals toxicity (i.e., zinc, manganese, nickel, cobalt, copper, arsenate, chromium, lead, and mercury). The bacterium was identified as a strain of Aciditiobacillus ferrooxidans. The isolate showed good resistance to most of the toxic metals. The proteomics approach was used to identify the differentially expressed proteins under heavy metal stress in this strain. Four of the differentially expressed proteins were identified as major outer membrane protein of A. ferrooxidans, ribulose bisphosphate carboxylase large subunit of A. ferrooxidans, putative DNA restriction methylase,... 

    Cytotoxicity and cell cycle effects of bare and poly(vinyl alcohol)-coated iron oxide nanoparticles in mouse fibroblasts

    , Article Advanced Engineering Materials ; Volume 11, Issue 12 , 2009 , Pages B243-B250 ; 14381656 (ISSN) Mahmoudi, M ; Simchi, A ; Vali, H ; Imani, M ; Shokrgozar, M. A ; Azadmanesh, K ; Azari, F ; Sharif University of Technology
    Abstract
    Super-paramagnetic iron oxide nanoparticles (SPIONs) are recognized as powerful biocompatible materials for use in various biomedical applications, such as drug delivery, magnetic-resonance imaging, cell/protein separation, hyperthermia and transfection. This study investigates the impact of high concentrations of SPIONs on cytotoxicity and cell-cycle effects. The interactions of surfacesaturated (via interactions with cell medium) bare SPIONs and those coated with poly(vinyl alcohol) (PVA) with adhesive mouse fibroblast cells (L929) are investigated using an MTT assay. The two SPION formulations are synthesized using a co-precipitation method. The bare and coated magnetic nanoparticles with... 

    DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism

    , Article BMC Genomics ; 2017 , Volume 18, Issue 1 ; 14712164 (ISSN) Sharifi Zarchi, A ; Gerovska, D ; Adachi, K ; Totonchi, M ; Pezeshk, H ; Taft, R. J ; Schöler, H. R ; Chitsaz, H ; Sadeghi, M ; Baharvand, H ; Araúzo Bravo, M. J ; Sharif University of Technology
    Abstract
    Background: DNA methylation at promoters is largely correlated with inhibition of gene expression. However, the role of DNA methylation at enhancers is not fully understood, although a crosstalk with chromatin marks is expected. Actually, there exist contradictory reports about positive and negative correlations between DNA methylation and H3K4me1, a chromatin hallmark of enhancers. Results: We investigated the relationship between DNA methylation and active chromatin marks through genome-wide correlations, and found anti-correlation between H3K4me1 and H3K4me3 enrichment at low and intermediate DNA methylation loci. We hypothesized "seesaw" dynamics between H3K4me1 and H3K4me3 in the low... 

    Synthesis, crystal structure, DFT calculation and DNA binding studies of new water-soluble derivatives of dppz

    , Article Journal of Molecular Structure ; Volume 1145 , 2017 , Pages 141-151 ; 00222860 (ISSN) Aminzadeh, M ; Eslami, A ; Kia, R ; Aleeshah, R ; Sharif University of Technology
    Abstract
    Diquaternarization of dipyrido-[2,3-a:2′,3′-c]-phenazine,(dppz) and its analogous dipyrido-[2,3-a:2′,3′-c]-dimethylphenazine,(dppx) using 1,3-dibromopropane afford new water-soluble derivatives of phenazine, propylene-bipyridyldiylium-phenazine (1) and propylene-bipyridyldiylium-dimethylphenazine (2). The compounds have been characterized by means of FT-IR, NMR, elemental analysis and conductometric measurements and their structure were determined by X-ray crystallography. The experimental studies on the compounds have been accompanied computationally by Density Functional Theory (DFT) calculations. The DNA binding properties of both compounds to calf thymus DNA (ctDNA) were investigated by... 

    Impedimetic biosensor for the DNA of the human papilloma virus based on the use of gold nanosheets

    , Article Microchimica Acta ; Volume 184, Issue 6 , 2017 , Pages 1729-1737 ; 00263672 (ISSN) Karimizefreh, A ; Aghakhani Mahyari, F ; VaezJalali, M ; Mohammadpour, R ; Sasanpour, P ; Sharif University of Technology
    Abstract
    The authors describe an impedimetric method for the quantitation of the DNA of the human papilloma virus (HPV) type 16. A glassy carbon electrode (GCE) was modified with gold nanosheets and is shown to be superior to a common gold disk electrode. A single-stranded 25mer oligonucleotide (ssDNA) acting as the probe DNA was immobilized via its thiolated 5′ end on both electrodes. After hybridization with target (analyte) DNA, electrochemical impedance spectra were acquired in the presence of hexacyanoferrate as a redox marker. The sensor can distinguish between complementary, non-complementary and single base pair mismatches of HPV ssDNA. At a 1 mM hexacyanoferrate concentration, the biosensors... 

    Deciphering the electric field changes in the channel of an open quantum system to detect DNA nucleobases

    , Article Journal of Computational Electronics ; Volume 16, Issue 2 , 2017 , Pages 411-418 ; 15698025 (ISSN) Khadempar, N ; Berahman, M ; Yazdanpanah Goharrizi, A ; Sharif University of Technology
    Abstract
    DNA nucleobases strongly absorbed onto a graphene sheet placed between two gold electrodes in a contact–channel–contact configuration were distinguished. We analyzed the system using the nonequilibrium Green’s function method combined with density functional theory. The changes of the electric field in the middle of the vacuum gap (channel) were investigated. The Mulliken population was deciphered for graphene and the nucleobases. We also extracted the image plane, which was found to lie very close to the position of peak induced density. The projection of the electron difference density and electrostatic difference potential of the nucleobases are also presented. The nucleobases were... 

    Meta-aligner: long-read alignment based on genome statistics

    , Article BMC Bioinformatics ; Volume 18, Issue 1 , 2017 ; 14712105 (ISSN) Nashta Ali, D ; Aliyari, A ; Ahmadian Moghadam, A ; Edrisi, M. A ; Motahari, S. A ; Khalaj, B. H ; Sharif University of Technology
    Abstract
    Background: Current development of sequencing technologies is towards generating longer and noisier reads. Evidently, accurate alignment of these reads play an important role in any downstream analysis. Similarly, reducing the overall cost of sequencing is related to the time consumption of the aligner. The tradeoff between accuracy and speed is the main challenge in designing long read aligners. Results: We propose Meta-aligner which aligns long and very long reads to the reference genome very efficiently and accurately. Meta-aligner incorporates available short/long aligners as subcomponents and uses statistics from the reference genome to increase the performance. Meta-aligner estimates... 

    Detection and a possible link between parvovirus B19 and thyroid cancer

    , Article Tumor Biology ; Volume 39, Issue 6 , 2017 ; 10104283 (ISSN) Etemadi, A ; Mostafaei, S ; Yari, K ; Ghasemi, A ; Chenar, H. M ; Moghoofei, M ; Sharif University of Technology
    Abstract
    Human parvovirus B19 (B19) is a small, non-enveloped virus and belongs to Parvoviridae family. B19 persists in many tissues such as thyroid tissue and even thyroid cancer. The main aim of this study was to determine the presence of B19, its association with increased inflammation in thyroid tissue, and thus its possible role in thyroid cancer progression. Studies have shown that virus replication in non-permissive tissue leads to overexpression of non-structural protein and results in upregulation of proinflammatory cytokines such as interleukin 6 and tumor necrosis factor alpha. A total of 36 paraffin-embedded thyroid specimens and serum were collected from patients and 12 samples were used... 

    Developmental barcoding of whole mouse via homing CRISPR

    , Article Science ; Volume 361, Issue 6405 , 2018 ; 00368075 (ISSN) Kalhor, R ; Kalhor, K ; Mejia, L ; Leeper, K ; Graveline, A ; Mali, P ; Church, G. M ; Sharif University of Technology

    A clustering-based algorithm for de novo motif discovery in DNA sequences

    , Article 2017 24th Iranian Conference on Biomedical Engineering and 2017 2nd International Iranian Conference on Biomedical Engineering, ICBME 2017, 30 November 2017 through 1 December 2017 ; 2018 ; 9781538636091 (ISBN) Ebrahim Abadi, M. H ; Fatemizadeh, E ; Sharif University of Technology
    Abstract
    Motif discovery is a challenging problem in molecular biology and has been attracting researcher's attention for years. Different kind of data and computational methods have been used to unravel this problem, but there is still room for improvement. In this study, our goal was to develop a method with the ability to identify all the TFBS signals, including known and unknown, inside the input set of sequences. We developed a clustering method specialized as part of our algorithm which outperforms other existing clustering methods such as DNACLUST and CD-HIT-EST in clustering short sequences. A scoring system was needed to determine how much a cluster is close to being a real motif. Multiple...