Loading...
Search for: cysteine
0.006 seconds
Total 26 records

    Simultaneous Determination of Glutathione- Cysteine, and Detection of Mercury Ion (II) Based on Fluorescence Resonance Energy Transfer between Gold Nanoparticles and Fluorescein Isothiocyanate

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Jamaloddin (Author) ; Hormozi-Nezhad, Mohammad Reza (Supervisor)
    Abstract
    Turn-On Fluorescence detection is a selective and sensitive method for many analytical purposes. Fluorescence quenching is a commonly observed consequence when fluorophores and quencher, gold nanoparticles (Au NPs) in this work, are in same media. Here, we report a “turn-on” fluorescent nanoprobe for simultaneous determination of glutathione and cysteine using H-point standard addition method (HPSAM). This probe develops based on the fluorescence resonance energy transfer (FRET) between Au NPs and fluorescein isothiocyanate (FITC), in which FITC acts as the donor and Au NPs as the acceptor. FRET causes the fluorescence intensity of FITC strictly quenched as a result of noncovalently adsorbed on... 

    A Facile, Two-step Synthesis and Characterization of Fe3O4-Lcysteine- Graphene Quantum Dots as a Multifunctional Nanocomposite

    , M.Sc. Thesis Sharif University of Technology Alaghmand Fard, Amir Hossein (Author) ; Madah Hosseini, Hamid Reza (Supervisor)
    Abstract
    In this research, a facile, two-step synthesis was reported for 34-LCysteine- nanocomposites. The first step comprises the preparation of LCysteine functionalized magnetic nanoparticles (MNPs) core-shell structures via co-precipitation method. In the second step, graphene quantum dots (GQDs), which were synthesized by citric acid carbonization, added to the functionalized MNPs and finally refluxed at the appropriate time and temperature. LCysteine as a biocompatible, natural amino acid were used to link MNPs with GQDs. This nanocomposite was characterized by various techniques. XRD and FT-IR were used to investigate the formation of MNPs and LCysteine existence on the MNPs surface. XPS... 

    Spectrophotometric Determination of Glutathione and Cysteine Based on Aggregation of Colloidal Gold Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Seyyed Hosseini, Ensieh (Author) ; Hormozi Nezhad, Mohammad Reza (Supervisor)
    Abstract
    low-molecular-weigth aminothiols such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) play a critical role in many biochemical pathways . Their level in biological fluids such as human plasma and urine are important for clinical diagnostics of a variety of diseases.
    We report herein the development of a highly sensitive colorimetric method for detection of cysteine and glutathione using the citrate capped gold nanoparticles (Au-NPs). This thiol containing molecules exhibit intriguing reactivities with Au nanoparticles. The reactivity involves the displacement of the citrate shell by the thiolate shell which is followed by intermolecular electrostatic interactions or... 

    Design of Nature-Inspired Multicolor Sensor for Detection and Discrimination of Biothiols based on Anti-Etching on Gold Nanorods

    , M.Sc. Thesis Sharif University of Technology Akhondi, Golara (Author) ; Hormozinezhad, Mohammad Reza (Supervisor)
    Abstract
    Biological thiols are crucial substances that play an essential role in several biological processes and activities in the body. Hence, the fluctuation of their concentrations can be used as a diagnostic sign for numerous disorders. In contrast, the ratio of these thiols to their disulfide form within the cell is useful as an indicator for determining cytotoxicity. Hence, it is crucial for develop a simple yet efficient analytical technique for quickly recognizing and determining them. The purpose of this study is to develop a plasmonic colorimetric sensor by utilizing gold nanorods (AuNRs). This sensor aims to accurately measure and distinguish between cysteine (CYS) and glutathione (GSH),... 

    The metabolic network model of primed/naive human embryonic stem cells underlines the importance of oxidation-reduction potential and tryptophan metabolism in primed pluripotency

    , Article Cell and Bioscience ; Volume 9, Issue 1 , 2019 ; 20453701 (ISSN) Yousefi, M ; Marashi, S. A ; Sharifi Zarchi, A ; Taleahmad, S ; Sharif University of Technology
    BioMed Central Ltd  2019
    Abstract
    Background: Pluripotency is proposed to exist in two different stages: Naive and Primed. Conventional human pluripotent cells are essentially in the primed stage. In recent years, several protocols have claimed to generate naive human embryonic stem cells (hESCs). To the best of our knowledge, none of these protocols is currently recognized as the gold standard method. Furthermore, the consistency of the resulting cells from these diverse protocols at the molecular level is yet to be shown. Additionally, little is known about the principles that govern the metabolic differences between naive and primed pluripotency. In this work, using a computational approach, we tried to shed light on... 

    Interactions of glutathione tripeptide with gold cluster: Influence of intramolecular hydrogen bond on complexation behavior

    , Article Journal of Physical Chemistry A ; Volume 116, Issue 17 , 2012 , Pages 4338-4347 ; 10895639 (ISSN) Tehrani, Z. A ; Jamshidi, Z ; Javan, M. J ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    Understanding the nature of the interaction between metal nanoparticles and biomolecules has been important in the development and design of sensors. In this paper, structural, electronic, and bonding properties of the neutral and anionic forms of glutathione tripeptide (GSH) complexes with a Au 3 cluster were studied using the DFT-B3LYP with 6-31+G**-LANL2DZ mixed basis set. Binding of glutathione with the gold cluster is governed by two different kinds of interactions: Auâ€"X (X = N, O, and S) anchoring bond and Au··•·•H-X nonconventional hydrogen bonding. The influence of the intramolecular hydrogen bonding of glutathione on the interaction of this peptide with the gold cluster has been... 

    Degradation of BTEX in groundwater by nano-CaO2 particles activated with L-cysteine chelated Fe(III): enhancing or inhibiting hydroxyl radical generation

    , Article Water Supply ; Volume 21, Issue 8 , 2021 , Pages 4429-4441 ; 16069749 (ISSN) Sun, X ; Ali, M ; Cui, C ; Lyu, S ; Sharif University of Technology
    IWA Publishing  2021
    Abstract
    The simultaneous oxidation performance of benzene, toluene, ethylbenzene, and xylene (BTEX) by nanoscale calcium peroxide particles (nCaO2) activated with ferric ions (Fe(III)) and the mechanism of the enhancement of BTEX degradation by L-cysteine (L-cys) were investigated. The batch experimental results showed that the nCaO2/Fe(III)/L-cys process was effective in the destruction of BTEX in both ultrapure water and actual groundwater. A proper amount of L-cys could enhance BTEX degradation due to the promotion of Fe(II)/Fe(III) redox cycles by the participation of L-cys, but an excessive presence of L-cys would cause inhibition. Adding 1.0 mM L-cys to the nCaO2/Fe(III) system, the... 

    Differential pulse voltammetric determination of N-acetylcysteine by the electrocatalytic oxidation at the surface of carbon nanotube-paste electrode modified with cobalt salophen complexes

    , Article Sensors and Actuators, B: Chemical ; Volume 133, Issue 2 , 12 August , 2008 , Pages 599-606 ; 09254005 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Bezaatpour, A ; Boghaei, D. M ; Sharif University of Technology
    2008
    Abstract
    The preparation and electrochemical performance of the carbon nanotube-paste electrode modified with salophen complexes of cobalt(III) perchlorate, with various substituents on the salophen ligand, as well as their electrocatalytic activity toward the oxidation of N-acetylcysteine (NAC) is investigated. Several Schiff base complexes containing various nucleophilic and electrophilic functional groups were prepared, and their electrochemical characteristics for the electro-oxidation of NAC were evaluated using cyclic and differential pulse voltammetry (CV and DPV). The results revealed, the modified electrodes show an efficient and selective electrocatalytic activity toward the anodic... 

    Voltammetric studies of a cobalt(II)-4-methylsalophen modified carbon-paste electrode and its application for the simultaneous determination of cysteine and ascorbic acid

    , Article Electrochimica Acta ; Volume 50, Issue 1 , 2004 , Pages 77-84 ; 00134686 (ISSN) Shahrokhian, S ; Karimi, M ; Sharif University of Technology
    2004
    Abstract
    A carbon-paste electrode (CPE) chemically modified with the cobalt(II)-4-methylsalophen (CoMSal) as a Schiff base complex was used as a highly sensitive and fairly selective electrochemical sensor for simultaneous, determination of minor mounts of ascorbic acid (AA) and cysteine. This modified electrode shows very efficient electrocatalytic activity for anodic oxidation of both AA and cysteine via substantially decreasing of anodic overpotentials for both compounds. The. mechanism of electrochemical oxidation of both AA and cysteine using CoMSal-modified electrode was thoroughly investigated by cyclic voltammetry and polarization studies. Results of cyclic voltammetry (CV) and differential... 

    Amino acids and their complex formation properties with divalent metal ions, a comparative investigation of structure and stability in binary systems

    , Article Current Pharmaceutical Analysis ; Volume 10, Issue 2 , 2014 , Pages 122-134 ; ISSN: 15734129 Sajadi, S. A. A ; Sharif University of Technology
    Abstract
    A comparative investigation has been developed for the stability constants of several amino acid complexes with divalent metal ions, which have been determined by potentiometric pH titration. Depending on the metal ion-binding properties, vital differences in the building complexes were observed. The present study indicates that in some M(L) complexes, metal ions are arranged in carboxyl groups, but in other M(L)complexes, some metal ions are able to build chelate over amine groups. The results mentioned-above demonstrate that for some M(L) complexes, the stability constants are also largely determined by the affinity of metal ions for amine group. This leads to a kind of selectivity of... 

    RETRACTED ARTICLE: Study of stabilities of L-cysteine and L-methionine with divalent metal ions: A comparison of thermodynamic data

    , Article 5th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2011 ; 2011 ; 9781424450893 (ISBN) Sajadi, S. A. A ; Sharif University of Technology
    Abstract
    The acidity and stability constants of M-Met (M: M2+; Met 1: L-methionine) complexes, determined by potentiometric pH titrations, were used to make a comparative investigation with L-cysteine (Cys). It is shown that regarding to M ion - binding properties vital differences on complex bilding were considered. It is demonstrated, that in M-Met complexes, M ion is coordinated to the carboxyl group, M ion is also able to build macrochelate over amine group. The upmentioned results demonstrate that for M-Met complex the stability constants is also largly determined by the affinity of Cu2+ for amino group but in opposite to Met, some metal ions such as Co2+, Cu2+, and Zn2+ build with Cys 2... 

    Effect of Cysteine Substitutions on the Structural and Magnetic Properties of Fe3O4–Cysteine/RGO and Fe3O4/RGO–Cysteine Nanocomposites

    , Article Journal of Superconductivity and Novel Magnetism ; 2018 ; 15571939 (ISSN) Sahebalzamani, H ; Mehrani, K ; Madaah Hosseini, H. R ; Zare, K ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    We synthesized by electrostatic self-assembly route in basic solution Fe3O4–cysteine/RGO and Fe3O4/RGO–cysteine nanocomposites. In this method, electrostatic interaction was created via negatively charged surface of the reduced graphene oxide and reduced graphene oxide–cysteine sheets and positively charged surface of the Fe3O4 and Fe3O4–Cys nanoparticles in aqueous solution. The structural and magnetic properties of the prepared samples were analyzed by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM), respectively. The dependences of magnetization as a function of... 

    Effect of cysteine substitutions on the structural and magnetic properties of Fe3O4–Cysteine/RGO and Fe3O4/RGO–Cysteine nanocomposites

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 32, Issue 5 , 2019 , Pages 1299-1306 ; 15571939 (ISSN) Sahebalzamani, H ; Mehrani, K ; Madaah Hosseini , H. R ; Zare, K ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    We synthesized by electrostatic self-assembly route in basic solution Fe3O4–cysteine/RGO and Fe3O4/RGO–cysteine nanocomposites. In this method, electrostatic interaction was created via negatively charged surface of the reduced graphene oxide and reduced graphene oxide–cysteine sheets and positively charged surface of the Fe3O4 and Fe3O4–Cys nanoparticles in aqueous solution. The structural and magnetic properties of the prepared samples were analyzed by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM), respectively. The dependences of magnetization as a function of... 

    Radial basis function-artificial neural network (RBF-ANN) for simultaneous fluorescent determination of cysteine enantiomers in mixtures

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 261 , 2021 ; 13861425 (ISSN) Safarnejad, A ; Reza Hormozi Nezhad, M ; Abdollahi, H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The determination of chiral compounds is critically important in chemical and pharmaceutical sciences. Cysteine amino acid is one of the important chiral compounds where each enantiomer (L and D) has different effects on fundamental physiological processes. The unique optical properties of nanoparticles make them a suitable probe for the determination of different analytes. In this work, the water-soluble thioglycolic acid (TGA)-capped cadmium-telluride (CdTe) quantum dots (QDs) were applied as optical nanoprobe for the simultaneous determination of cysteine enantiomers. The difference in the kinetics of the interactions between L- and D-cysteine with CdTe QDs is used for multivariate... 

    Useful multivariate kinetic analysis: Size determination based on cystein-induced aggregation of gold nanoparticles

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 115 , 2013 , Pages 588-594 ; 13861425 (ISSN) Rabbani, F ; Nezhad, M. R. H ; Abdollahi, H ; Sharif University of Technology
    2013
    Abstract
    This study describes spectrometric monitored kinetic processes to determine the size of citrate-capped Au nanoparticles (Au NPs) based on aggregation induced by L-cysteine (L-Cys) as a molecular linker. The Au NPs association process is thoroughly dependent on pH, concentration and size of nanoparticles. Size dependency of aggregation inspirits to determine the average diameters of Au NPs. For this aim the procedure is achieved in aqueous medium at pH 7 (phosphate buffer), and multivariate data including kinetic spectra of Au NPs are collected during aggregation process. Subsequently partial least squares (PLS) modeling is carried out analyzing the obtained data. The model is built on the... 

    Fabrication of modified TiO 2 nanoparticle carbon paste electrode for simultaneous determination of dopamine, uric acid, and l-cysteine

    , Article Journal of Solid State Electrochemistry ; Volume 13, Issue 9 , 2009 , Pages 1433-1440 ; 14328488 (ISSN) Mazloum Ardakani, M ; Talebi, A ; Naeimi, H ; Nejati Barzoky, M ; Taghavinia, N ; Sharif University of Technology
    2009
    Abstract
    A carbon paste electrode, modified with 2, 2″-[1,7- hepthandiylbis(nitriloethylidyne)]-bis-hydroquinone and TiO 2 nanoparticles, was used for the simultaneous determination of dopamine (DA), uric acid (UA), and l-cysteine. The study was carried out by using cyclic voltammetry, chronoamperometry, and square wave voltammetry (SWV) techniques. Some kinetic parameters such as the electron transfer coefficient (α) and heterogeneous rate constant (k s) were also determined for the DA oxidation. A dynamic range of 8.0-1400 μM, with the detection limit of 8.4∈×∈10 -7 M for DA, was obtained using SWV (pH∈=∈7.0). The prepared electrode was successfully applied for the determination of DA, UA, and... 

    Spectrophotometric determination of glutathione and cysteine based on aggregation of colloidal gold nanoparticles

    , Article Scientia Iranica ; Volume 19, Issue 3 , June , 2012 , Pages 958-963 ; 10263098 (ISSN) Hormozi Nezhad, M. R ; Seyedhosseini, E ; Robatjazi, H ; Sharif University of Technology
    2012
    Abstract
    We report herein the development of a highly sensitive colorimetric method for the determination of cysteine and glutathione, based on aggregation of the citrate capped gold nanoparticles (Au NPs). This was exploited from high affinity of low-molecular-weight aminothiols towards the Au NPs surface, which could induce displacement of the citrate shell by the thiolate shell of target molecules, resulting in aggregation of the NPs through intermolecular electrostatic interaction or hydrogen-bonding. As a result of aggregation, which can be affected by the ionic strength, pH and concentration of Au NPs, the plasmon band at around 521 nm decreases gradually, along with formation of a new red... 

    Effect of cysteine oxidation in SARS-CoV-2 receptor-binding domain on its interaction with two cell receptors: Insights from atomistic simulations

    , Article Journal of Chemical Information and Modeling ; Volume 62, Issue 1 , 2022 , Pages 129-141 ; 15499596 (ISSN) Ghasemitarei, M ; Privat Maldonado, A ; Yusupov, M ; Rahnama, S ; Bogaerts, A ; Ejtehadi, M. R ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Binding of the SARS-CoV-2 S-glycoprotein to cell receptors is vital for the entry of the virus into cells and subsequent infection. ACE2 is the main cell receptor for SARS-CoV-2, which can attach to the C-terminal receptor-binding domain (RBD) of the SARS-CoV-2 S-glycoprotein. The GRP78 receptor plays an anchoring role, which attaches to the RBD and increases the chance of other RBDs binding to ACE2. Although high levels of reactive oxygen and nitrogen species (RONS) are produced during viral infections, it is not clear how they affect the RBD structure and its binding to ACE2 and GRP78. In this research, we apply molecular dynamics simulations to study the effect of oxidation of the highly... 

    A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles

    , Article Analytica Chimica Acta ; Volume 882 , July , 2015 , Pages 58-67 ; 00032670 (ISSN) Ghasemi, F ; Hormozi-Nezhad, M.R ; Mahmoudi, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Developments of sensitive, rapid, and cheap systems for identification of a wide range of biomolecules have been recognized as a critical need in the biology field. Here, we introduce a simple colorimetric sensor array for detection of biological thiols, based on aggregation of three types of surface engineered gold nanoparticles (AuNPs). The low-molecular-weight biological thiols show high affinity to the surface of AuNPs; this causes replacement of AuNPs' shells with thiol containing target molecules leading to the aggregation of the AuNPs through intermolecular electrostatic interaction or hydrogen-bonding. As a result of the predetermined aggregation, color and UV-vis spectra of AuNPs... 

    Theoretical study of the electron transport through the cysteine amino acid nanomolecular wire

    , Article International Journal of Nanoscience ; Volume 07, Issue 02, n 03 , April & June , 2008 , pp. 95-102 Ganji, M. D ; Aghaie, H ; Gholami, M. R.(Mohammad Reza) ; Sharif University of Technology
    Abstract
    In this paper, we study the electrical transport and Negative Differential Resistance (NDR) in a single molecular conductor consisting of a cysteine sandwiched between two Au(111) electrodes via the Density Functional Theory-based Nonequilibrium Green's Function (DFT-NEGF) method. We show that (surprisingly, despite their apparent simplicity, these Au/cysteine/Au nanowires are shown to be a convenient NDR device) the smallest two-terminal molecular wire can exhibit NDR behavior to date. Experiments with a conventional or novel self-assembled monolayer (SAM) are proposed to test these predictions. The projected density of states (PDOSs) and transmission coefficients T(E) under various...