Loading...
Search for: computational-effort
0.01 seconds
Total 37 records

    Application of endurance time method in seismic analysis of bridges

    , Article Scientia Iranica ; Volume 27, Issue 4A , 2021 , Pages 1751-1761 ; 10263098 (ISSN) Ghaffari, E ; Estekanchi, H. E ; Vafai, A ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    In this paper, the application of Endurance Time (ET) method to the seismic analysis of bridges is elaborated. ET method is a novel seismic analysis method based on time history analysis in which a structure is subjected to a predefined intensifying acceleration function. First, six concrete bridges were modeled in this study. Three Endurance Time Acceleration Functions (ETAFs) were applied to the models, and the average of responses was calculated. Next, the time history analysis was conducted using seven real accelerograms that are scaled using the method recommended by Federal Highway Administration (FHWA) to be compatible with the design spectrum of American Association of State Highway... 

    An efficient approach for optimum shape design of steel shear panel dampers under cyclic loading

    , Article Smart Structures and Systems ; Volume 27, Issue 3 , 2021 , Pages 547-557 ; 17381584 (ISSN) Khatibinia, M ; Ahrari, A ; Gharehbaghi, S ; Sarafrazi, S. R ; Sharif University of Technology
    Techno-Press  2021
    Abstract
    The low-cycle fatigue performance of shear panel damper (SPD) highly depends on the geometry of its shape and the criterion considered for its design. The main contribution of the current study is to find the optimum shape of the SPD subjected to cyclic loading by considering two different objective functions. The maximum equivalent plastic strain and the ratio of energy dissipation through plastic deformation to the maximum equivalent plastic strain are selected as the first and second objective functions, respectively. Since the optimization procedure requires high computational efforts, a hybrid computational approach is used to perform two paramount phases of estimating the inelastic... 

    An efficient and robust method for optimizing the number of non-linear iterations for simulating highly heterogeneous naturally fractured reservoirs

    , Article Society of Petroleum Engineers - Abu Dhabi International Petroleum Exhibition and Conference 2020, ADIP 2020, 9 through 12 November ; 2020 Mohajeri, S ; Eslahi, R ; Bakhtiari, M ; Alizadeh, A ; Zeinali, M ; Madani, M ; Rajabi, H ; Sharifi, E ; Mortezazadeh, E ; Mahdavifar, Y ; Sharif University of Technology
    Society of Petroleum Engineers  2020
    Abstract
    For speeding up the complex fractured reservoir simulating, we have given more attention to reducing runtime and improving efficiency of the solver. In this work, we describe an improved and computationally efficient version of Newton's method, which reduces the non-linear iteration count, increases time steps, and furthermore reduces time spent in nonlinear loops of reservoir simulating. Safeguarded variants of Newton's method which have used in current reservoir simulators cannot guarantee convergence of the solution, especially in highly heterogeneous, detailed and fractured reservoirs. In such simulators time step chopping is often observed. From other hand, with growing complexity,... 

    A method for matching response spectra of endurance time excitations via the Fourier transform

    , Article Earthquake Engineering and Engineering Vibration ; Volume 19, Issue 3 , July , 2020 , Pages 637-648 Mashayekhi, M ; Estekanchi, H. E ; Vafai, H ; Sharif University of Technology
    Institute of Engineering Mechanics (IEM)  2020
    Abstract
    The endurance time (ET) method is a dynamic analysis in which structures are subjected to intensifying excitations, also known as ET excitation functions (ETEF). The ET method is a tool for structural response prediction. The main advantage of the ET method over conventional approaches is its much lower demand for computational efforts. The concept of acceleration spectra is used in generating existing ETEFs. It is expected that ETEF acceleration spectra increase consistently with time and remain proportional to a target spectrum. Nonlinear unconstrained optimization is commonly used to generate ETEFs. Generating new ETEFs is a complicated time-consuming mathematical problem. If the target... 

    Expansion planning studies of independent-locally operated battery energy storage systems (BESSs): A CVaR-Based study

    , Article IEEE Transactions on Sustainable Energy ; Volume 11, Issue 4 , 2020 , Pages 2109-2118 Saber, H ; Heidarabadi, H ; Moeini Aghtaie, M ; Farzin, H ; Karimi, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Nowadays, the high penetration of renewable energy resources, with variable and unpredictable nature, poses major challenges to operation and planning studies of power systems. Employing energy storage systems (ESSs) has been introduced as an effective solution to alleviate these challenges. Several studies have been presented in the literature to provide a framework for expansion planning studies of ESSs. However, they usually have two main drawbacks: i) ignoring the positive effect of independent-locally operated ESSs on the bulk power system preferences, ii) inability to model the charge/discharge schedule of independent-locally operated ESSs based on their investors' acceptable risk... 

    A new shape-based multiple-impulse strategy for coplanar orbital maneuvers

    , Article Acta Astronautica ; Volume 161 , 2019 , Pages 200-208 ; 00945765 (ISSN) Shakouri, A ; Kiani, M ; Pourtakdoust, S. H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A new shape-based geometric method (SBGM) is proposed for generation of multi-impulse transfer trajectories between arbitrary coplanar oblique orbits via a heuristic algorithm. The key advantage of the proposed SBGM includes a significant reduction in the number of design variables for an N-impulse orbital maneuver leading to a lower computational effort and energy requirement. The SBGM generates a smooth transfer trajectory by joining a number of confocal elliptic arcs such that the intersections share common tangent directions. It is proven that the well-known classic Hohmann transfer and its bi-elliptic counterpart between circular orbits are special cases of the proposed SBGM. The... 

    A new control method for elimination of current THD under extremely polluted grid conditions applied on a three phase PWM rectifier

    , Article 2018 IEEE International Telecommunications Energy Conference, INTELEC 2018, 7 October 2018 through 11 October 2018 ; Volume 2018-October , 2019 ; 02750473 (ISSN); 9781538653708 (ISBN) Golkhandan, N. H ; Chamanian, M. A ; Tahami, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Depending on the reference frame, a proportional integral (PI) or proportional resonant (PR) controller is often utilized for current control in the three-phase PWM rectifiers. Due to the fact that the controller bandwidth is either smaller than the frequency of a specific order harmonic or the controller gain at that frequency is too low the harmonics cannot be effectively eliminated. Among all approaches introduced for harmonic elimination, selective harmonic compensation is believed to have a better performance. Selective harmonic compensation can successfully compensate for harmonics. It, however, forces a considerable computation burden on DSP. This paper proposes a new compensation... 

    DPD simulation of non-Newtonian electroosmotic fluid flow in nanochannel

    , Article Molecular Simulation ; Volume 44, Issue 17 , 2018 , Pages 1444-1453 ; 08927022 (ISSN) Jafari, S ; Zakeri, R ; Darbandi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    We use the dissipative particle dynamics (DPD) method to simulate the non-Newtonian electroosmotic flow (EOF) through nanochannels. Contrary to a large amount of past computational efforts dedicated to the study of EOF profile, this work pays attention to the EOF of non-Newtonian fluids, which has been rarely touched in past publications. Practically, there are many MEMS/NEMS devices, in which the EOF behaviour should be treated assuming both non-continuum and non-Newtonian conditions. Therefore, our concern in this work is to simulate the EOF through nanochannels considering both non-Newtonian fluid properties and non-continuum flow conditions. We have chosen DPD as our working tool because... 

    A fast online bandwidth empirical mode decomposition scheme for avoidance of the mode mixing problem

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 232, Issue 20 , 2018 , Pages 3652-3674 ; 09544062 (ISSN) Momeni Massouleh, S. H ; Hosseini Kordkheili, S. A ; Navazi, H. M ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    The main objective of this work is to propose a scheme to extract intrinsic mode functions of online data with an acceptable speed as well as accuracy. For this purpose, an individual block framework method is firstly employed to extract the intrinsic mode functions. In this method, buffers are selected such that they overlap with their neighbors to prevent the end effect errors with no need for the averaging process. And in order to avoid the mode mixing problem, a bandwidth empirical mode decomposition scheme is developed to effectively improve the results. Through this scheme, an auxiliary function made of both high- and low-frequency components corresponding to noise and dominant... 

    Robust ground reaction force estimation and control of lower-limb prostheses: theory and simulation

    , Article IEEE Transactions on Systems, Man, and Cybernetics: Systems ; 2018 ; 21682216 (ISSN) Azimi, V ; Nguyen, T. T ; Sharifi, M ; Fakoorian, A ; Simon, D ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Ground reaction force (GRF) characteristics of amputee walking are important for the analysis of clinical gait data, and also to update model reference adaptive impedance (MRAI) controllers. GRF estimation is a better alternative than direct GRF measurement because of the disadvantages of load cells, such as high cost, integration difficulties due to weight and physical dimensions, the possibility of overload, and measurement noise. This paper presents four robust MRAI observer/controller combinations for GRF estimation-based control of a prosthesis and a legged robot model in the presence of parametric uncertainties and unmodeled dynamics, in which the robot model is employed to mimic... 

    Seismic reliability assessment of structures using artificial neural network

    , Article Journal of Building Engineering ; Volume 11 , 2017 , Pages 230-235 ; 23527102 (ISSN) Vazirizade, S. M ; Nozhati, S ; Allameh Zadeh, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Localization and quantification of structural damage and estimating the failure probability are key outputs in the reliability assessment of structures. In this study, an Artificial Neural Network (ANN) is used to reduce the computational effort required for reliability analysis and damage detection. Toward this end, one demonstrative structure is modeled and then several damage scenarios are defined. These scenarios are considered as training data sets for establishing an ANN model. In this regard, the relationship between structural response (input) and structural stiffness (output) is established using ANN models. The established ANN is more economical and achieves reasonable accuracy in... 

    A methodology for value based seismic design of structures by the endurance time method

    , Article Scientia Iranica ; Volume 23, Issue 6 , 2016 , Pages 2514-2527 ; 10263098 (ISSN) Basim, M ; Estekanchi, H. E ; Vafai, A ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    A new design methodology based on the total value of structures is introduced. This methodology, namely Value Based Design of structures (VBD), uses the advantages of Endurance Time (ET) method. While prescriptive and earlier generations of performance based design approaches commonly try to find structures with the least initial cost, a design approach to directly incorporate the concept of value in design procedure has been formulated here. Reduced computational effort in ET analysis provides the prerequisites to practical use of optimization algorithms in seismic design. A genetic algorithm is used with the objective of minimizing total cost of the building during its lifespan. ET method... 

    A priority based genetic algorithm for nonlinear transportation costs problems

    , Article Computers and Industrial Engineering ; Volume 96 , 2016 , Pages 86-95 ; 03608352 (ISSN) Ghassemi Tari, F ; Hashemi, Z ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this manuscript, a vehicle allocation problem involving a heterogeneous fleet of vehicles for delivering products from a manufacturing firm to a set of depots is considered. Each depot has a specific order quantity and transportation costs consist of fixed and variable transportation cost. The objective is to assign the proper type and number of vehicle to each depot route to minimize the total transportation costs. It is assumed that the number of chartering vehicle types is limited. It is also assumed that a discount mechanism is applied to the vehicles renting cost. The discount mechanism is applied to the fixed cost, based on the number of vehicles to be rented. A mathematical... 

    Collapse assessment of steel moment frames using endurance time method

    , Article Earthquake Engineering and Engineering Vibration ; Volume 14, Issue 2 , 2015 , Pages 347-360 ; 16713664 (ISSN) Rahimi, E ; Estekanchi, H. E ; Sharif University of Technology
    Institute of Engineering Mechanics (IEM)  2015
    Abstract
    In endurance time (ET) method structures are subjected to a set of predesigned intensifying excitations. These excitations are produced in a way that their response spectrum, while complying with a specified spectrum, intensifies with time so they can be used approximately to simulate the average effects of several ground motions scaled to different intensities. In this paper applicability of the ET method for evaluating collapse potential of buildings is investigated. A set of four steel moment frames is used for collapse assessment. The process of using ET method in collapse evaluation is explained and the results are compared with incremental dynamic analysis (IDA) results. It is shown... 

    Surface elasticity and size effect on the vibrational behavior of silicon nanoresonators

    , Article Current Applied Physics ; Volume 15, Issue 11 , November , 2015 , Pages 1389-1396 ; 15671739 (ISSN) Nejat Pishkenari, H ; Afsharmanesh, B ; Akbari, E ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Predominance of nano-scale effects observed in material behavior at small scales requires implementation of new simulation methods which are not merely based on classical continuum mechanic. On the other hand, although the atomistic modeling methods are capable of modeling nano-scale effects, due to the computational cost, they are not suitable for dynamic analysis of nano-structures. In this research, we aim to develop a continuum-based model for nano-beam vibrations which is capable of predicting the results of molecular dynamics (MD) simulations with considerably lower computational effort. In this classical-based modeling, the surface and core regions are taken to have different... 

    Polynomial chaos expansions for uncertainty propagation and moment independent sensitivity analysis of seawater intrusion simulations

    , Article Journal of Hydrology ; Volume 520 , January , 2015 , Pages 101-122 ; 00221694 (ISSN) Rajabi, M. M ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Real world models of seawater intrusion (SWI) require high computational efforts. This creates computational difficulties for the uncertainty propagation (UP) analysis of these models due the need for repeated numerical simulations in order to adequately capture the underlying statistics that describe the uncertainty in model outputs. Moreover, despite the obvious advantages of moment-independent global sensitivity analysis (SA) methods, these methods have rarely been employed for SWI and other complex groundwater models. The reason is that moment-independent global SA methods involve repeated UP analysis which further becomes computationally demanding. This study proposes the use of... 

    Nonlinear seismic assessment of steel moment frames using time-history, incremental dynamic, and endurance time analysis methods

    , Article Scientia Iranica ; Volume 20, Issue 3 , 2013 , Pages 431-444 ; 10263098 (ISSN) Hariri Ardebili, M. A ; Zarringhalam, Y ; Estekanchi, H. E ; Yahyai, M ; Sharif University of Technology
    2013
    Abstract
    A recent method in the seismic assessment of structures is Endurance Time Analysis (ETA). ETA is a time-history-based dynamic pushover procedure, in which structures are subjected to gradually intensifying acceleration functions called Endurance Time Acceleration Functions (ETAFs), and their performances are evaluated based on the equivalent intensity level that they can endure while satisfying required performance goals. In this paper, the accuracy of the ETA in the seismic assessment of steel moment resisting frames is compared with the Time History Analysis (THA) and Incremental Dynamic Analysis (IDA) methods. For this purpose, a set of mid-rise and high-rise frames were selected as a... 

    Sensitivity analysis of jacket-type offshore platforms under extreme waves

    , Article Journal of Constructional Steel Research ; Volume 83 , 2013 , Pages 147-155 ; 0143974X (ISSN) Hezarjaribi, M ; Bahaari, M. R ; Bagheri, V ; Ebrahimian, H ; Sharif University of Technology
    2013
    Abstract
    Jacket-type offshore platforms play an important role in oil and gas industries in shallow and intermediate water depths such as Persian Gulf region. Such important structures need accurate considerations in analysis, design and assessment procedures. In this paper, nonlinear response of jacket-type platforms against extreme waves is examined utilizing sensitivity analyses. Results of this paper can reduce the number of random variables and consequently the computational effort in reliability analysis of jacket platforms, noticeably. Effects of foundation modeling have been neglected in majority of researches on the response of jacket platforms against wave loads. As nonlinear response of... 

    A functional model predictive control approach for power system load frequency control considering generation rate constraint

    , Article International Transactions on Electrical Energy Systems ; Volume 23, Issue 2 , 2013 , Pages 214-229 ; 20507038 (ISSN) Shiroei, M ; Ranjbar, A. M ; Amraee, T ; Sharif University of Technology
    2013
    Abstract
    In this paper, a wide area measurement, centralized, load frequency control using model predictive control (MPC) is presented for multi-area power systems. A multivariable constrained MPC was used to calculate optimal control actions including generation rate constraints. To alleviate computational effort and to reduce numerical problems, particularly in large prediction horizon, an exponentially weighted functional MPC was employed. Time-based simulation studies were performed on a three-area power system, and the results were then compared with decentralized MPC and classical PI controller. The results show that the proposed MPC scheme offers significantly better performance against load... 

    Iterative method for frequency updating of simple vibrating system

    , Article Journal of Vibroengineering ; Volume 14, Issue 3 , 2012 , Pages 1370-1377 ; 13928716 (ISSN) Tabeshpour, M. R ; Sharif University of Technology
    JVE  2012
    Abstract
    Iterative methods for modification of vibratory characteristics of dynamic systems have attracted a lot of attention as a convenient and more economical way when compared to the traditional and costly structural dynamic optimization processes. Many complicated structures, such as telecommunication towers, chimneys and tall buildings, may be modeled as simple spring-mass systems. This paper presents an iterative method for modification of the frequencies of simple vibrating system consisting of springs and masses. The proposed algorithm may be used to adjust any of the vibration frequencies of a simple vibrating system to the target values within the desired level of accuracy. The method...