Loading...
Search for: chromosomes
0.006 seconds
Total 27 records

    Comparative Analysis of Haplotype Assembly Algorithms to Identify and Propose Optimal Methods

    , M.Sc. Thesis Sharif University of Technology Bagher, Melina (Author) ; Jahed, Mehran (Supervisor) ; Hossein Khalaj, Babak (Supervisor)
    Abstract
    Humans, as a diploid species, have two nucleotide sequences of homologous chromosomes in their genomes, where one set is inherited from the mother, and the other comes from the father. The Single Individual Haplotype assembly problem (SIH) refers to the reconstruction of these two distinct nucleotide sequences of a chromosome from the sequencing reads, and it is currently considered one of the most important issues in the field of computational genomics, which plays an essential role in solving various genetic and medical problems.Nowadays direct experimental methods are not welcomed due to their high cost, and labor intensity, and are limited to certain regions of the genome, therefore,... 

    Symbiotic evolution of rule based classifier systems

    , Article International Journal on Artificial Intelligence Tools ; Volume 18, Issue 1 , 2009 , Pages 1-16 ; 02182130 (ISSN) Halavati, R ; Bagheri Shouraki, S ; Lotfi, S ; Esfandiar, P ; Sharif University of Technology
    2009
    Abstract
    Evolutionary Algorithms are vastly used in development of rule based classifier systems in data mining where the rule base is usually a set of If-Then rules and an evolutionary trait develops and optimizes these rules. Genetic Algorithm is usually a favorite solution for such tasks as it globally searches for good rule-sets without any prior bias or greedy force, but it is usually slow. Also, designing a good genetic algorithm for rule base evolution requires the design of a recombination operator that merges two rule bases without disrupting the functionalities of each of them. To overcome the speed problem and the need to design recombination operator, this paper presents a novel algorithm... 

    Symbiotic evolutionary algorithm, a remedy for linkage problem

    , Article International Journal of Computational Intelligence and Applications ; Volume 8, Issue 3 , 2009 , Pages 237-252 ; 14690268 (ISSN) Halavati, R ; Bagheri Shouraki, S ; Sharif University of Technology
    2009
    Abstract
    Recombination in Genetic Algorithms (GA) is supposed to extract the component characteristics from two parents and reassemble them in different combinations, hopefully producing an offspring that has the good characteristics of both parents, and this requires explicit chromosome and recombination, operator by design. This paper presents a novel evolutionary approach based on symbiogenesis which uses symbiotic combination instead of sexual recombination, and by using this operator, it requires no domain knowledge for chromosome or combination operator design. The algorithm is benchmarked on three problem sets: combinatorial optimization category, deceptive problems, and fully deceptive... 

    Solving haplotype reconstruction problem in MEC model with hybrid information fusion

    , Article EMS 2008, European Modelling Symposium, 2nd UKSim European Symposium on Computer Modelling and Simulation, Liverpool, 8 September 2008 through 10 September 2008 ; 2008 , Pages 214-218 ; 9780769533254 (ISBN) Asgarian, E ; Moeinzadeh, M. H ; Habibi, J ; Sharifian-R, S ; Rasooli-V, A ; Najafi-A, A ; Sharif University of Technology
    2008
    Abstract
    Single Nucleotide Polymorphisms (SNPs), a single DNA base varying from one individual to another, are believed to be the most frequent form responsible for genetic differences. Genotype is the conflated information of a pair of haplotypes on homologous chromosomes. Although haplotypes have more information for disease associating than individual SNPs and genotype, it is substantially more difficult to determine haplotypes through experiments. Hence, computational methods which can reduce the cost of determining haplotypes become attractive alternatives. MEC, as a standard model for haplotype reconstruction, is fed by fragments as input to infer the best pair of haplotypes with minimum error... 

    Small RNA sequencing reveals dlk1-dio3 locus-embedded microRNAs as major drivers of ground-state pluripotency

    , Article Stem Cell Reports ; Volume 9, Issue 6 , 2017 , Pages 2081-2096 ; 22136711 (ISSN) Moradi, S ; Sharifi Zarchi, A ; Ahmadi, A ; Mollamohammadi, S ; Stubenvoll, A ; Günther, S ; Hosseini Salekdeh, G ; Asgari, S ; Braun, T ; Baharvand, H ; Sharif University of Technology
    Abstract
    Ground-state pluripotency is a cell state in which pluripotency is established and maintained through efficient repression of endogenous differentiation pathways. Self-renewal and pluripotency of embryonic stem cells (ESCs) are influenced by ESC-associated microRNAs (miRNAs). Here, we provide a comprehensive assessment of the “miRNome” of ESCs cultured under conditions favoring ground-state pluripotency. We found that ground-state ESCs express a distinct set of miRNAs compared with ESCs grown in serum. Interestingly, most “ground-state miRNAs” are encoded by an imprinted region on chromosome 12 within the Dlk1-Dio3 locus. Functional analysis revealed that ground-state miRNAs embedded in the... 

    Size-dependent genotoxicity of graphene nanoplatelets in human stem cells

    , Article Biomaterials ; Volume 33, Issue 32 , 2012 , Pages 8017-8025 ; 01429612 (ISSN) Akhavan, O ; Ghaderi, E ; Akhavan, A ; Sharif University of Technology
    2012
    Abstract
    Reduced graphene oxide nanoplatelets (rGONPs) were synthesized by sonication of covalently PEGylated GO sheets followed by a chemical reduction using hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs), as a fundamental factor in tissue engineering, were isolated from umbilical cord blood (as a recently proposed source for extracting fresh hMSCs) to investigate, for the first time, the size-dependent cyto- and geno-toxic effects of the rGONPs on the cells. The cell viability test showed significant cell destructions by 1.0 μg/mL rGONPs with average lateral dimensions (ALDs) of 11±4 nm, while the rGO sheets with ALDs of 3.8±0.4 μm could exhibit a significant cytotoxic... 

    Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer’s disease therapy

    , Article Biophysical Reviews ; Volume 11, Issue 6 , 2019 , Pages 901-925 ; 18672450 (ISSN) Jokar, S ; Khazaei, S ; Behnammanesh, H ; Shamloo, A ; Erfani, M ; Beiki, D ; Bavi, O ; Sharif University of Technology
    Springer  2019
    Abstract
    Alzheimer’s disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective therapeutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new strategies for the treatment of AD. A large body of evidence indicates that amyloid-β (Aβ) peptide fibrillation plays a key role in the onset and progression of AD. Recent studies have reported... 

    Monte Carlo simulation of a lattice model for the dynamics of randomly branching double-folded ring polymers

    , Article Physical Review E ; Volume 104, Issue 1 , 2021 ; 24700045 (ISSN) Ghobadpour, E ; Kolb, M ; Ejtehadi, M. R ; Everaers, R ; Sharif University of Technology
    American Physical Society  2021
    Abstract
    Supercoiled DNA, crumpled interphase chromosomes, and topologically constrained ring polymers often adopt treelike, double-folded, randomly branching configurations. Here we study an elastic lattice model for tightly double-folded ring polymers, which allows for the spontaneous creation and deletion of side branches coupled to a diffusive mass transport, which is local both in space and on the connectivity graph of the tree. We use Monte Carlo simulations to study systems falling into three different universality classes: ideal double-folded rings without excluded volume interactions, self-avoiding double-folded rings, and double-folded rings in the melt state. The observed static properties... 

    Iterative histogram matching algorithm for chromosome image enhancement based on statistical moments

    , Article Proceedings - International Symposium on Biomedical Imaging ; 2012 , Pages 214-217 ; 19457928 (ISSN) ; 9781457718588 (ISBN) Ehsani, S. P ; Mousavi, H. S ; Khalaj, B. H ; Sharif University of Technology
    IEEE  2012
    Abstract
    Vivid banding pattern of the chromosome image is a crucial part for diagnosis in karyotype medical test. Furthermore, thriving computer aided segmentation and classification depend on the initial image quality. In this paper, we propose an adaptive and iterative histogram matching algorithm for chromosome contrast enhancement especially in banding patterns which is one of the most important information laid in chromosome image. Objective histogram, with which the initial image needs to be matched, is created based on processes on the initial image histogram. Calculation of statistical moments of image histogram and determination of parameters in each step of iteration based on these moments... 

    IMOS: improved meta-aligner and minimap2 on spark

    , Article BMC Bioinformatics ; Volume 20, Issue 1 , 2019 ; 14712105 (ISSN) Hadadian Nejad Yousefi, M ; Goudarzi, M ; Motahari, A ; Sharif University of Technology
    BioMed Central Ltd  2019
    Abstract
    Background: Long reads provide valuable information regarding the sequence composition of genomes. Long reads are usually very noisy which renders their alignments on the reference genome a daunting task. It may take days to process datasets enough to sequence a human genome on a single node. Hence, it is of primary importance to have an aligner which can operate on distributed clusters of computers with high performance in accuracy and speed. Results: In this paper, we presented IMOS, an aligner for mapping noisy long reads to the reference genome. It can be used on a single node as well as on distributed nodes. In its single-node mode, IMOS is an Improved version of Meta-aligner (IM)... 

    Homozygous mutations in C14orf39/SIX6OS1 cause non-obstructive azoospermia and premature ovarian insufficiency in humans

    , Article American Journal of Human Genetics ; Volume 108, Issue 2 , 2021 , Pages 324-336 ; 00029297 (ISSN) Fan, S ; Jiao, Y ; Khan, R ; Jiang, X ; Javed, A. R ; Ali, A ; Zhang, H ; Zhou, J ; Naeem, M ; Murtaza, G ; Li, Y ; Yang, G ; Zaman, Q ; Zubair, M ; Guan, H ; Zhang, X ; Ma, H ; Jiang, H ; Ali, H ; Dil, S ; Shah, W ; Ahmad, N ; Zhang, Y ; Shi, Q ; Sharif University of Technology
    Cell Press  2021
    Abstract
    Human infertility is a multifactorial disease that affects 8%–12% of reproductive-aged couples worldwide. However, the genetic causes of human infertility are still poorly understood. Synaptonemal complex (SC) is a conserved tripartite structure that holds homologous chromosomes together and plays an indispensable role in the meiotic progression. Here, we identified three homozygous mutations in the SC coding gene C14orf39/SIX6OS1 in infertile individuals from different ethnic populations by whole-exome sequencing (WES). These mutations include a frameshift mutation (c.204_205del [p.His68Glnfs∗2]) from a consanguineous Pakistani family with two males suffering from non-obstructive... 

    Genotoxicity of graphene nanoribbons in human mesenchymal stem cells

    , Article Carbon ; Volume 54 , 2013 , Pages 419-431 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Emamy, H ; Akhavan, F ; Sharif University of Technology
    2013
    Abstract
    Single-layer reduced graphene oxide nanoribbons (rGONRs) were obtained through an oxidative unzipping of multi-walled carbon nanotubes and a subsequent deoxygenation by hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs) were isolated from umbilical cord blood and used for checking the concentration- and time-dependent cyto- and geno-toxic effects of the rGONRs and reduced graphene oxide sheets (rGOSs). The cell viability assay indicated significant cytotoxic effects of 10 μg/mL rGONRs after 1 h exposure time, while the rGOSs exhibited the same cytotoxicity at concentration of 100 μg/mL after 96 h. The oxidative stress was found as the main mechanism involved in the... 

    Evolving fuzzy classifiers using a symbiotic approach

    , Article 2007 IEEE Congress on Evolutionary Computation, CEC 2007; Singapore, 25 September 2007 through 28 September 2007 ; 2007 , Pages 1601-1607 ; 1424413400 (ISBN); 9781424413409 (ISBN) Soleymani Baghshah, M ; Bagheri Shouraki, S ; Halavati, R ; Lucas, C ; Sharif University of Technology
    2007
    Abstract
    Fuzzy rule-based classifiers are one of the famous forms of the classification systems particularly in the data mining field. Genetic algorithm is a useful technique for discovering this kind of classifiers and it has been used for this purpose in some studies. In this paper, we propose a new symbiotic evolutionary approach to find desired fuzzy rulebased classifiers. For this purpose, a symbiotic combination operator has been designed as an alternative to the recombination operator (crossover) in the genetic algorithms. In the proposed approach, the evolution starts from simple chromosomes and the structure of chromosomes gets complex gradually during the evolutionary process. Experimental... 

    Dose-dependent effects of nanoscale graphene oxide on reproduction capability of mammals

    , Article Carbon ; Volume 95 , December , 2015 , Pages 309-317 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Hashemi, E ; Akbari, E ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In vivo dose-dependent effects of nanoscale graphene oxide (NGO) sheets on reproduction capability of Balb/C mice were investigated. Biodistribution study of the NGO sheets (intravenously injected into male mice at dose of ∼2000 μg/mL or 4 mg/kg of body weight) showed a high graphene uptake in testis. Hence, in vivo effects of the NGO sheets on important characteristics of spermatozoa (including their viability, morphology, kinetics, DNA damage and chromosomal aberration) were evaluated. Significant in vivo effects was found at the injected concentrations ≥200 μg/mL after (e.g., ∼45% reduction in sperm viability and motility at 2000 μg/mL). Observation of remarkable DNA fragmentations and... 

    Dna-Rna hybrid (R-loop): From a unified picture of the mammalian telomere to the genome-wide profile

    , Article Cells ; Volume 10, Issue 6 , 2021 ; 20734409 (ISSN) Rassoulzadegan, M ; Sharifi Zarchi, A ; Kianmehr, L ; Sharif University of Technology
    MDPI  2021
    Abstract
    Local three-stranded DNA/RNA hybrid regions of genomes (R-loops) have been detected either by binding of a monoclonal antibody (DRIP assay) or by enzymatic recognition by RNaseH. Such a structure has been postulated for mouse and human telomeres, clearly suggested by the identification of the complementary RNA Telomeric repeat-containing RNA “TERRA”. However, the tremendous disparity in the information obtained with antibody-based technology drove us to investigate a new strategy. Based on the observation that DNA/RNA hybrids in a triplex complex genome co-purify with the double-stranded chromosomal DNA fraction, we developed a direct preparative approach from total protein-free cellular... 

    Concurrent project scheduling and material planning: a genetic algorithm approach

    , Article Scientia Iranica ; Volume 16, Issue 2 E , 2009 , Pages 91-99 ; 10263098 (ISSN) Sheikh Sajadieh, M ; Shadrokh, S ; Hassanzadeh, F ; Sharif University of Technology
    Abstract
    Scheduling projects incorporated with materials ordering results in a more realistic problem. This paper deals with the combined problem of project scheduling and material ordering. The purpose of this paper is to minimize the total cost of this problem by determining the optimal values of activity duration, activity finish time and the material ordering schedule subject to constraints. We employ a genetic algorithm approach to solve it. Elements of the algorithm, such as chromosome structure, unfitness function, crossover, mutation and local search operations are explained. The results of the experimentation are quite satisfactory  

    Concavity degree: A new feature for chromosome centromere localization

    , Article AISP 2012 - 16th CSI International Symposium on Artificial Intelligence and Signal Processing ; 2012 , Pages 58-63 ; 9781467314794 (ISBN) Mohammadi, M. R ; Sharif University of Technology
    2012
    Abstract
    Analyzing the features of the chromosomes can be very useful for diagnosis of many genetic disorders or prediction of the possible abnormalities that may occur in the future generations. For this purpose, karyotype is often used which to make it, there is necessary to identify each one of the 24 chromosomes from the microscopic images. Definition and extraction of the morphological and band pattern based features for each chromosome is the first step to identify them. An important class of the morphological features is the location of the chromosome's centromere. Thus, centromere localization is an initial step in designing an automatic karyotyping system. In this paper, a novel algorithm... 

    Chromosome image contrast enhancement using adaptive, iterative histogram matching

    , Article 2011 7th Iranian Conference on Machine Vision and Image Processing, MVIP 2011 - Proceedings, 16 November 2011 through 17 November 2011 ; 2011 ; 9781457715358 (ISBN) Ehsani, S. P ; Mousavi, H. S ; Khalaj, B. H ; Sharif University of Technology
    2011
    Abstract
    Vivid banding patterns in medical images of chromosomes are a vital feature for karyotyping and chromosome classification. The chromosome image quality may be degraded by many phenomenon such as staining, sample defectness and imaging conditions. Thus, an image enhancement processing algorithm is needed before classification of chromosomes. In this paper, we propose an adaptive and iterative histogram matching (AIHM) algorithm for chromosome contrast enhancement especially in banding patterns. The reference histogram, with which the initial image needs to be matched, is created based on some processes on the initial image histogram. Usage of raw information in the histogram of initial image... 

    CGC: centralized genetic-based clustering protocol for wireless sensor networks using onion approach

    , Article Telecommunication Systems ; Volume 62, Issue 4 , 2016 , Pages 657-674 ; 10184864 (ISSN) Hatamian, M ; Barati, H ; Movaghar, A ; Naghizadeh, A ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    Wireless sensor networks consist of a large number of nodes which are distributed sporadically in a geographic area. The energy of all nodes on the network is limited. For this reason, providing a method of communication between nodes and network administrator to manage energy consumption is crucial. For this purpose, one of the proposed methods with high performance, is clustering methods. The big challenge in clustering methods is dividing network into several clusters that each cluster is managed by a cluster head (CH). In this paper, a centralized genetic-based clustering (CGC) protocol using onion approach is proposed. The CGC protocol selects the appropriate nodes as CHs according to... 

    Cell-imprinted substrates act as an artificial niche for skin regeneration

    , Article ACS Applied Materials and Interfaces ; Vol. 6, Issue. 15 , 2014 , Pages 13280-13292 ; ISSN: 19448244 Mashinchian, O ; Bonakdar, S ; Taghinejad, H ; Satarifard, V ; Heidari, M ; Majidi, M ; Sharifi, S ; Peirovi, A ; Saffar, S ; Taghinejad, M ; Abdolahad, M ; Mohajerzadeh, S ; Shokrgozar, M. A ; Rezayat, S. M ; Ejtehadi M. R ; Dalby, M. J ; Mahmoudi, M ; Sharif University of Technology
    Abstract
    Bioinspired materials can mimic the stem cell environment and modulate stem cell differentiation and proliferation. In this study, biomimetic micro/nanoenvironments were fabricated by cell-imprinted substrates based on mature human keratinocyte morphological templates. The data obtained from atomic force microscopy and field emission scanning electron microscopy revealed that the keratinocyte-cell-imprinted poly(dimethylsiloxane) casting procedure could imitate the surface morphology of the plasma membrane, ranging from the nanoscale to the macroscale, which may provide the required topographical cell fingerprints to induce differentiation. Gene expression levels of the genes analyzed...