Loading...
Search for: cell-membranes
0.009 seconds
Total 63 records

    Diffusion of Lipid and Protein Molecules in Cell Membranes

    , Ph.D. Dissertation Sharif University of Technology Khoshnood, Atefeh (Author) ; Jalali, Abbas (Supervisor)
    Abstract
    Lipid membranes are fundamental constituents of cell membranes and are now used in lap-on-a-chip technology. Membranes in living cells contain a significant fraction of proteins, which undergo lateral random movements due to thermal fluctuations and shear forces imposed by the solvent fluid. Prominent natural and biotechnological systems where membranes are highly sheared include the plasma membrane of endothelial cells, and membranes used in biosensors for high throughput screening of drug candidates, and in water purification devices. In these systems membrane is in direct contact with the mainstream suspension flow, which is driven by pressure gradients. The efficiency and function of... 

    Study the Interaction between Cytoskleton and Cell Membrane

    , M.Sc. Thesis Sharif University of Technology Sepehr Dehghani Ghahnaviyeh (Author) ; Nejat Pishkenari, Hossein (Supervisor) ; Salarieh, Hassasn (Supervisor)
    Abstract
    In this project the main aim is to model the interaction between the cytoskeleton and cell membrane. In order to model the membrane and cytoskeleton it is used a discrete model, which contains several beads. For modeling the interaction between the beads it is used different kinds of energies. It is used four potentials in a 2D model for modeling the interaction between the membrane beads and it is used SSLJ potential in order to model the interaction between the cytoskeleton and cell membrane. Furthermore, this potential is used to model the interaction between the cytoskeleton filaments. Due to this potential, the cytoskeleton filaments can cross each other in the 2D model. For modeling... 

    Modeling and Analysis of a Nano Particle Impinged on a Human Cell in Gene Therapy

    , M.Sc. Thesis Sharif University of Technology Rostami, Majid (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Firozbakhsh, Kikhosroo (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    owning to the side effects and disadvantages of conventional methods of cancers treatments such as chemotherapy, currently, scientists are attempting to find new methods to replace them. Furthermore, many human diseases like SCID and Hemophilia are due to genetic disorders and scientists are also seeking to find permanent treatments instead of available temporary ones for them. in recent years, regarding the obtained achievement, Gene Therapy is being considered as a promising method for both cancers and genetic disorders treatment. But due to low efficiency of this method at this stage, there is an endevour among researchers for a more profound comprehension of the basics of gene therapy to... 

    Nanoparticle Translocation Across a Lipid Bilayer:An Investigation into Size and Shape

    , M.Sc. Thesis Sharif University of Technology Shadmani, Peyman (Author) ; Naghdabadi, Reza (Supervisor) ; Montazeri Hedesh, Abbas (Co-Advisor)
    Abstract
    In recent years, application of nanotechnology in medicine is growing rapidly, specially, in the area of drug delivery. One of most import applications of nanotechnology is the using of nanoparticles as a carrier in targeted drug delivery systems. Simulation of drug delivery and prediction of drug release are developing in experimental and industrial areas. Mathematical modeling is used in drug delivery systems because they are time and cost saving and also can be used to predict drug behavior. The aim of this research, is to provide a framework for designing nano drug carriers. To this end, uptake of nanoparticles into different types of cells with different characteristics, in different... 

    Multi-Scale Simulation of the Viscoelastic Behavior of the Cell Membrane

    , M.Sc. Thesis Sharif University of Technology Ali Khourshaei Shargh (Author) ; NaghdAbadi, Reza (Supervisor) ; Sohrabpour, Saeed (Co-Advisor)
    Abstract
    Due to the limitations on experiments in the field of cell mechanics, computational modeling of biological cells have attracted attention within two recent decades. In general, some models have been developed in two different scales, known as microstructure and continuum, both of which have their own pros and cons. Nevertheless, viscoelastic behavior of cell membrane has attracted less attention of scientists up to now. Therefore, multi-scale simulation of the viscoelastic behavior of the cell membrane has been chosen as the main goal of this thesis. Toward this goal, at first the energy of the simulation box, consisting of 128 Dipalmitoylphosphatidylcholine and 3655 water molecules, was... 

    Study and Simulation of Nanoparticles Translocation through Cell Membrane

    , M.Sc. Thesis Sharif University of Technology Barzegar, Mohammad Reza (Author) ; Nejat Pishkenari, Hossein (Supervisor)
    Abstract
    In this research, we aim to study and simulate how nanoparticels translocate through cell membrane. For this purpose, at first a gold nanoparticle is selected as the drug carrier. The partial charges of the ligands are calculated using quantum mechanics based on HF technique with 6-31Gd basis set. To have a realistic shape for nano drug, number and arrangement of ligands are determined based on optimization. After all atom simulations and comparison of results such as diffusion coefficient with experiments, a coarse-grained model of these drugs is created and put inside solvent beside a membrane. The cytoplasmic membrane includes more than 60 types of phospholipids like animal membranes.... 

    Simulation of a Simple Model of Endothelial Cell Using Dissipative Particle Dynamics Method

    , M.Sc. Thesis Sharif University of Technology Kiyoumarsi Oskouei, Amir (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Firoozabadi, Bahar (Co-Advisor)
    Abstract
    Endothelium is the interior layer of an artery made up of tremendous number of endothelial cells which are located side by side. Finding the effective parameters that cause the cells to obtain mechanical strength in different morphologies is a major effort in cell engineering studies. In this work a numerical model for endothelial cells is developed. This model has included cell's plasma membrane (the outer membrane of the cell), nucleus and cytoskeleton main components including intermediate and actin filaments as well as microtubules. The model has been validated by simulating the adhesion of the cells to a flat substrate and also atomic force microscopy (AFM) experiments. The two most... 

    Fluids Flow Simulation in the Cell Influenced the Focal Adhesions

    , Ph.D. Dissertation Sharif University of Technology Nikmaneshi, Mohammad Reza (Author) ; Firoozabadi, Bahar (Supervisor) ; saidi, Mohammad said (Co-Advisor)
    Abstract
    In the present thesis, intracellular fluid flows have investigated for study cell motions. It is due to firmly relation between the cell motion and these flows. Generally, the cell firstly adheres to a surface, then, moves forward with the effects of the internal fluid flows. In this study, the cell structure is invided to two general parts; the front part of the cell and the cell body. The front part of the cell plays a essential roles in the cell motion, however, the cell body is considered as a extra cargo that is carried by the front of the cell. Therefor, in the present modellings, the front part is only considered. Here, using four different models for the front part of the cell, many... 

    Effect of Myr-MA Protein on the Local Curvature of HIV Virus Membrane

    , M.Sc. Thesis Sharif University of Technology Tarighi Asghar, Jalal (Author) ; Ejtehadi, Mohammad Reza (Supervisor)
    Abstract
    HIV virus in its life cycle in order to leave the host cell uses Gag polyprotein assembling on the inner leaflet of the membrane. Gag polyprotein could interact with the cellular membrane via Myr-MA protein inserted in its amino terminal. Based on the exprimental data, HIV matrix proteins (MA) assemble as hexamers of trimers on the membrane to form a hexagonal lattice. In this study, membrane anchoring of MA proteins and the effect of a hexamer of MA trimers on the local curvature of membrane have been simulated using a coarse-grained model. The results suggest that MA binding to the membrane is mainly due to electrostatically interactions between the HBR motif of MA with PIP2 lipids. In... 

    Toxicity of graphene and graphene oxide nanowalls against bacteria

    , Article ACS Nano ; Volume 4, Issue 10 , October , 2010 , Pages 5731-5736 ; 19360851 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2010
    Abstract
    Bacterial toxicity of graphene nanosheets in the form of graphene nanowalls deposited on stainless steel substrates was investigated for both Gram-positive and Gram-negative models of bacteria. The graphene oxide nanowalls were obtained by electrophoretic deposition of Mg2+-graphene oxide nanosheets synthesized by a chemical exfoliation method. On the basis of measuring the efflux of cytoplasmic materials of the bacteria, it was found that the cell membrane damage of the bacteria caused by direct contact of the bacteria with the extremely sharp edges of the nanowalls was the effective mechanism in the bacterial inactivation. In this regard, the Gram-negative Escherichia coli bacteria with an... 

    Thermodynamic analysis of a photovoltaic thermal system coupled with an organic Rankine cycle and a proton exchange membrane electrolysis cell

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 41 , 2022 , Pages 17894-17913 ; 03603199 (ISSN) Salari, A ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, the performance of a Photovoltaic Thermal-Organic Rankine Cycle (PVT-ORC) system combined with a Proton Exchange Membrane Electrolysis Cell (PEMEC) is investigated. A combined numerical/theoretical model of the system is developed and used to evaluate the effect of various system design parameters. In addition, the effects of using water, ethylene glycol, and a mixture of water and ethylene glycol (50/50) as the working fluid of the PVT system and R134a, R410a, and R407c as the working fluid of the ORC cycle on the performance of the PVT-ORC-PEMEC system are studied. Based on the results, R134a and water demonstrated the best performance as the working fluid of the ORC and PVT... 

    Theoretical modeling of actin-retrograde-flow passing clusters of confined T cell receptors

    , Article Mathematical Biosciences ; Volume 283 , 2017 , Pages 1-6 ; 00255564 (ISSN) Ghasemi V., A ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Elsevier Inc  2017
    Abstract
    Through the activation process of T cells, actin filaments move from the cell periphery toward the cell center. The moving filaments engage with T cell receptors and thus contribute to transportation of the signaling molecules. To study the connection between the moving actin filaments and T cell receptors, an experiment available in the literature has measured filaments flow velocity passing over a region of confined clusters of receptors. It shows that flow velocity decreases in the proximity of the receptors, and then regains its normal value after traversing the region, suggesting a dissipative friction-like connection. In this work, we develop a minimal theoretical model to re-examine... 

    The effect of the physical properties of the substrate on the kinetics of cell adhesion and crawling studied by an axisymmetric diffusion-energy balance coupled model

    , Article Soft Matter ; Volume 11, Issue 18 , Mar , 2015 , Pages 3693-3705 ; 1744683X (ISSN) Samadi Dooki, A ; Shodja, H. M ; Malekmotiei, L ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    In this paper an analytical approach to study the effect of the substrate physical properties on the kinetics of adhesion and motility behavior of cells is presented. Cell adhesion is mediated by the binding of cell wall receptors and substrate's complementary ligands, and tight adhesion is accomplished by the recruitment of the cell wall binders to the adhesion zone. The binders' movement is modeled as their axisymmetric diffusion in the fluid-like cell membrane. In order to preserve the thermodynamic consistency, the energy balance for the cell-substrate interaction is imposed on the diffusion equation. Solving the axisymmetric diffusion-energy balance coupled equations, it turns out that... 

    The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell

    , Article Bioresource Technology ; Volume 261 , 2018 , Pages 350-360 ; 09608524 (ISSN) Bazdar, E ; Roshandel, R ; Yaghmaei, S ; Mardanpour, M. M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This study develops a photosynthetic microalgae microbial fuel cell (PMMFC) engaged Chlorella vulgaris microalgae to investigate effect of light intensities and illumination regimes on simultaneous production of bioelectricity, biomass and wastewater treatment. The performance of the system under different light intensity (3500, 5000, 7000 and 10,000 lx) and light/dark regimes (24/00, 12/12, 16/8 h) was investigated. The optimum light intensity and light/dark regimes for achieving maximum yield of PMMFC were obtained. The maximum power density of 126 mW m−3, the coulombic efficiency of 78% and COD removal of 5.47% were achieved. The maximum biomass concentration of 4 g l−1 (or biomass yield... 

    Synthesis of new hybrid nanomaterials: Promising systems for cancer therapy

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 7, Issue 6 , 2011 , Pages 806-817 ; 15499634 (ISSN) Adeli, M ; Kalantari, M ; Parsamanesh, M ; Sadeghi, E ; Mahmoudi, M ; Sharif University of Technology
    2011
    Abstract
    Polyrotaxanes consisting of cyclodextrin rings, polyethylene glycol axes and quantum dot (QD) stoppers were synthesized and characterized. The molecular self-assembly of polyrotaxanes led to spindlelike nano-objects whose shape, size and position were dominated by QD stoppers. Due to their well-defined molecular self-assemblies, carbohydrate backbone, high functionality and several types of functional groups together with the high luminescence yield, synthesized hybrid nanostructures were recognized as promising candidates for biomedical applications. The potential applications of the molecular self-assemblies as drug-delivery systems was investigated by conjugation of doxorubicin (DOX) to... 

    Study and Simulation of Nanoparticle Translocation Through Cell Membrane

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; Volume 45, Issue 4 , 2021 , Pages 939-960 ; 22286187 (ISSN) Nejat Pishkenari, H ; Barzegar, M. R ; Taghibakhshi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this research, nanoparticle translocation through cell membrane has been studied and simulated. To this end, gold nanoparticles have been selected as the main carrier of the drug and have been functionalized with some selected ligands. The partial charges of the ligands have been calculated using quantum mechanics based on HF technique with 6-31Gd basis set. To achieve the realistic shape of a drug, the number and arrangement of ligands loaded on the gold nanoparticle have been optimized. After determining the properties such as diffusion coefficient and validating the results with experimental data, a MARTINI coarse-grained mapping of the drugs is created. The coarse-grained model of the... 

    Study and simulation of nanoparticle translocation through cell membrane

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; 2019 ; 22286187 (ISSN) Nejat Pishkenari, H ; Barzegar, M. R ; Taghibakhshi, A ; Sharif University of Technology
    Springer International Publishing  2019
    Abstract
    In this research, nanoparticle translocation through cell membrane has been studied and simulated. To this end, gold nanoparticles have been selected as the main carrier of the drug and have been functionalized with some selected ligands. The partial charges of the ligands have been calculated using quantum mechanics based on HF technique with 6-31Gd basis set. To achieve the realistic shape of a drug, the number and arrangement of ligands loaded on the gold nanoparticle have been optimized. After determining the properties such as diffusion coefficient and validating the results with experimental data, a MARTINI coarse-grained mapping of the drugs is created. The coarse-grained model of the... 

    Simulation of Red Blood Cell mechanical behavior in optical tweezers experiment based on a particle method

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010 ; Volume 2 , 2010 , Pages 325-329 ; 9780791844267 (ISBN) Ahmadian, M. T ; Firoozbakhsh, K ; Hasanian, M
    Abstract
    Optical tweezers provide an accurate measurement technique for evaluating mechanical properties of the living cells and many experimental studies have been done to understand the behavior of cells due to external forces. Numerical studies such as finite element methods have been used in order to simulate mechanical behavior of the Red Blood Cells (RBCs). Recent studies have shown that the particle methods are useful tools to simulate the mechanical behavior of living cells. Since in microscopic scales, using discrete models are preferred than continuum methods, a particle-based method is used to simulate the deformation of RBC which is stretched by optical tweezers. The cytoplasm of RBC is... 

    Simulation of low density lipoprotein (LDL) permeation into multilayer coronary arterial wall: interactive effects of wall shear stress and fluid-structure interaction in hypertension

    , Article Journal of Biomechanics ; Volume 67 , 2018 , Pages 114-122 ; 00219290 (ISSN) Roustaei, M ; Nikmaneshi, M. R ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Due to increased atherosclerosis-caused mortality, identification of its genesis and development is of great importance. Although, key factors of the origin of the disease is still unknown, it is widely believed that cholesterol particle penetration and accumulation in arterial wall is mainly responsible for further wall thickening and decreased rate of blood flow during a gradual progression. To date, various effective components are recognized whose simultaneous consideration would lead to a more accurate approximation of Low Density Lipoprotein (LDL) distribution within the wall. In this research, a multilayer Fluid-Structure Interaction (FSI) model is studied to simulate the penetration... 

    Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes

    , Article Journal of Materials Chemistry ; Volume 21, Issue 2 , Oct , 2011 , Pages 387-393 ; 09599428 (ISSN) Akhavan, O ; Abdolahad, M ; Abdi, Y ; Mohajerzadeh, S ; Sharif University of Technology
    2011
    Abstract
    Vertically aligned multi-wall carbon nanotube (CNT) arrays were fabricated in tip-growth mode on Ni/Si substrates using plasma enhanced chemical vapor deposition. In a purification process including hydrogenation and acid washing of the Ni/CNTs, the oxygen-containing functional groups were substantially reduced and a wide hollow core at the tip of the CNTs was formed by removing the Ni seeds. Sol-gel silver nanoparticles were deposited on the surface of the unpurified Ni/CNTs, while they could also be embedded within the hollow core of the Ni-removed CNTs. The persistency of the silver ions in the Ni-removed Ag-CNTs in comparison to the release of the silver ions from the Ag-Ni/CNTs in a...