Loading...
Search for: biosensors
0.01 seconds
Total 124 records

    Electrochemical and computational studies of bio-mimicked Ti3C2Tx MXene-based sensor with multivalent interface

    , Article Journal of Colloid and Interface Science ; Volume 623 , 2022 , Pages 1063-1074 ; 00219797 (ISSN) Ranjbar, S ; Ashari Astani, N ; Atabay, M ; Naseri, N ; Esfandiar, A ; Reza Ejtehadi, M ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Two-dimensional MXenes are the newly emerging family of nanomaterials with competitive performance for nano-device development. Surface functional groups and abundant binding sites make these materials ideal candidates for sensor applications. Herein, we report the successful fabrication of a MXene-based nano-bio device for capturing, sensing, and filtering the Escherichia coli (E. coli) bacteria. Mannose carbohydrate, which binds strongly to E.coli's fimH protein via glucan multivalent interactions, is used as the bio-receptor element. MXene's structure was engineered to guarantee efficient E. coli capturing without mannose detachment. Electrochemical impedance spectroscopy (EIS) and cyclic... 

    CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin

    , Article Chemosphere ; Volume 306 , 2022 ; 00456535 (ISSN) Rabiee, N ; Akhavan, O ; Fatahi, Y ; Ghadiri, A. M ; Kiani, M ; Makvandi, P ; Rabiee, M ; Nicknam, M. H ; Saeb, M. R ; Varma, R. S ; Ashrafizadeh, M ; Nazarzadeh Zare, E ; Sharifi, E ; Lima, E. C ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and evaluation of their trace concentrations are of... 

    Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases

    , Article Microchimica Acta ; Volume 189, Issue 7 , 2022 ; 00263672 (ISSN) Ebrahimi, G ; Samadi Pakchin, P ; Shamloo, A ; Mota, A ; de la Guardia, M ; Omidian, H ; Omidi, Y ; Sharif University of Technology
    Springer  2022
    Abstract
    The integration of microfluidics with electrochemical analysis has resulted in the development of single miniaturized detection systems, which allows the precise control of sample volume with multianalyte detection capability in a cost- and time-effective manner. Microfluidic electrochemical sensing devices (MESDs) can potentially serve as precise sensing and monitoring systems for the detection of molecular markers in various detrimental diseases. MESDs offer several advantages, including (i) automated sample preparation and detection, (ii) low sample and reagent requirement, (iii) detection of multianalyte in a single run, (iv) multiplex analysis in a single integrated device, and (v)... 

    Synthesis of green benzamide-decorated UiO-66-NH2 for biomedical applications

    , Article Chemosphere ; Volume 299 , 2022 ; 00456535 (ISSN) Rabiee, N ; Ghadiri, A. M ; Alinezhad, V ; Sedaghat, A ; Ahmadi, S ; Fatahi, Y ; Makvandi, P ; Saeb, M. R ; Bagherzadeh, M ; Asadnia, M ; Varma, R. S ; Lima, E. C ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Metal-organic frameworks (MOFs) biocompatible systems can host enzymes/bacteria/viruses. Herein we synthesized a series of fatty acid amide hydrolase (FAAH)-decorated UiO-66-NH2 based on Citrus tangerine leaf extract for drug delivery and biosensor applications. Five chemically manipulated FAAH-like benzamides were localized on the UiO-66-NH2 surface with physical interactions. Comprehensive cellular and molecular analyses were conducted on HEK-293, HeLa, HepG2, PC12, MCF-7, and HT-29 cell lines (cytotoxicity assessment after 24 and 48 h). MTT results proved above 95 and 50% relative cell viability in the absence and presence of the drug, respectively. A complete targeted drug-releasing... 

    Design of high-sensitivity surface plasmon resonance sensor based on nanostructured thin films for effective detection of DNA hybridization

    , Article Plasmonics ; Volume 17, Issue 4 , 2022 , Pages 1831-1841 ; 15571955 (ISSN) Ghayoor, R ; Zangenehzadeh, S ; Keshavarz, A ; Sharif University of Technology
    Springer  2022
    Abstract
    As developed countries’ ability to control infectious diseases increases, it has become clear that genetic diseases are a major cause of disability, death, and human tragedy. Coronavirus has recently spread throughout the world, and the capacity to detect low concentrations and virus changes can help to prevent the sickness from spreading further. In this paper, a surface plasmon resonance sensor based on nanostructured thin films and graphene as a 2D material has been designed with high sensitivity and accuracy to identify DNA-based infectious diseases such as SARS-CoV-2. The transfer matrix method assesses the effects of different structural factors, including nanolayer thickness on the... 

    Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen

    , Article Science of the Total Environment ; Volume 825 , 2022 ; 00489697 (ISSN) Rabiee, N ; Fatahi, Y ; Ahmadi, S ; Abbariki, N ; Ojaghi, A ; Rabiee, M ; Radmanesh, F ; Dinarvand, R ; Bagherzadeh, M ; Mostafavi, E ; Ashrafizadeh, M ; Makvandi, P ; Lima, E. C ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Fast, efficient, and accurate detection of SARS-CoV-2 spike antigen is pivotal to control the spread and reduce the mortality of COVID-19. Nevertheless, the sensitivity of available nanobiosensors to detect recombinant SARS-CoV-2 spike antigen seems insufficient. As a proof-of-concept, MOF-5/CoNi2S4 is developed as a low-cost, safe, and bioactive hybrid nanostructure via the one-pot high-gravity protocol. Then, the porphyrin, H2TMP, was attached to the surface of the synthesized nanomaterial to increase the porosity for efficient detection of recombinant SARS-CoV-2 spike antigen. AFM results approved roughness in different ranges, including 0.54 to 0.74 μm and 0.78 to ≈0.80 μm, showing good... 

    Green CoNi2S4/porphyrin decorated carbon-based nanocomposites for genetic materials detection

    , Article Journal of Bioresources and Bioproducts ; Volume 6, Issue 3 , 2021 , Pages 215-222 ; 23699698 (ISSN) Saeb, M. R ; Rabiee, N ; Seidi, F ; Farasati Far, B ; Bagherzadeh, M ; Lima, E. C ; Rabiee, M ; Sharif University of Technology
    KeAi Communications Co  2021
    Abstract
    A one-pot synthesis method was conceptualized and implemented to develop green carbon-based nanocomposites working as biosensors. Porphyrin was synthesized to adorn the surface of nanocomposites making them highly sensitive for giving rise to π-π interactions between the genetic materials, proteins and porphyrin rings. The hydrogen bond formed between the proteins (analytes) and the nitrogen in the porphyrin structure as well as the surface hydroxyl groups was equally probable. In this context, different forms of porphyrins were incorporated to explore the interrelationship between the surface morphology and the ability of detection of genetic material and/or proteins by the aid of the... 

    Quantitative determination of linear alkylbenzene sulfonate (LAS) concentration and simultaneous power generation in a microbial fuel cell-based biosensor

    , Article Journal of Cleaner Production ; Volume 294 , 2021 ; 09596526 (ISSN) Askari, A ; Vahabzadeh, F ; Mardanpour, M. M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Linear alkylbenzene sulfonate (LAS), one of the most widely used synthetic surfactants in laundry detergent industry, is considered a hazardous contaminant in wastewater. In the present study, a microbial fuel cell (MFC) based biosensor is developed to quantitively determine the LAS concentration in wastewater. To do so, the developed MFC is fed with LAS concentration of 60 mg l−1. Finally, a sustained biofilm is formed after almost 34 days and the highest open circuit potential of 425 mV is recorded. The maximum power and current densities of 75 mW m−3 and 663 mA m−3 are obtained, respectively; and the internal resistance of the MFC-based biosensor is calculated to be about 1 kΩ. After 98... 

    Design of an effective piezoelectric microcantilever biosensor for rapid detection of COVID-19

    , Article Journal of Medical Engineering and Technology ; Volume 45, Issue 6 , 2021 , Pages 423-433 ; 03091902 (ISSN) Kabir, H ; Merati, M ; Abdekhodaie, M. J ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also called COVID-19, is one of the most contagious viruses resulting in a progressive pandemic. Since specific antiviral treatments have not been developed yet and its fatal rate is almost high, early and fast detection is critical for controlling the outbreak. In this study, a piezoelectric microcantilever biosensor has been designed for detecting COVID-19 samples directly without requiring preparation steps. The biosensor acts as a transducer and is coated with the related antibody. When the SARS-CoV-2 antigens adsorbed on the microcantilever top surface through their spike proteins, a surface stress due to the mass change would be... 

    Quick, single-frequency dielectric characterization of blood samples of pediatric cancer patients by a cylindrical capacitor: Pilot study

    , Article Electronics (Switzerland) ; Volume 9, Issue 1 , 2020 Ghanbarzadeh Daghian, A ; Ahmadian, M. T ; Ghanbarzadeh Dagheyan, A ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    In this paper, as an application in biometrics, the electrical capacitance of normal and cancerous blood samples is experimentally determined in order to test the null hypothesis that the electrical capacitance of the two samples differs. The samples taken from healthy donors and patients diagnosed with different types of hematologic cancer are examined by a cylindrical capacitor with blood as its dielectric. The capacitance of these samples is measured at room temperature and a single frequency of 120 Hz, well below the frequency where β-dispersion starts, using a simple LCR meter device. The measurements indicate that the capacitance of the blood increases under applied electric field for... 

    A 3D-printed hybrid nasal cartilage with functional electronic olfaction

    , Article Advanced Science ; Volume 7, Issue 5 , 2020 Jodat, Y. A ; Kiaee, K ; Vela Jarquin, D ; De la Garza Hernández, R. L ; Wang, T ; Joshi, S ; Rezaei, Z ; de Melo, B. A. G ; Ge, D ; Mannoor, M. S ; Shin, S. R ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    Advances in biomanufacturing techniques have opened the doors to recapitulate human sensory organs such as the nose and ear in vitro with adequate levels of functionality. Such advancements have enabled simultaneous targeting of two challenges in engineered sensory organs, especially the nose: i) mechanically robust reconstruction of the nasal cartilage with high precision and ii) replication of the nose functionality: odor perception. Hybrid nasal organs can be equipped with remarkable capabilities such as augmented olfactory perception. Herein, a proof-of-concept for an odor-perceptive nose-like hybrid, which is composed of a mechanically robust cartilage-like construct and a biocompatible... 

    Development of a nano biosensor for anti-gliadin detection for Celiac disease based on suspension microarrays

    , Article Biomedical Physics and Engineering Express ; Volume 6, Issue 5 , August , 2020 Kharati, M ; Rabiee, M ; Rostami Nejad, M ; Aghamohammadi, E ; Asadzadeh Aghdaei, H ; Zali, M. R ; Rabiee, N ; Fatahi, Y ; Bagherzadeh, M ; Webster, T. J ; Sharif University of Technology
    IOP Publishing Ltd  2020
    Abstract
    Celiac disease is an autoimmune disorder represented by the ingestion of the gluten protein usually found in wheat, barley and rye. To date, ELISA has been the most accurate method for determining the presence of anti-gliadin, which is cumbersome, expensive (compared to a suspension microarray technique), and requires extensive sample preparation. In this study, in order to establish a more accurate assay to identify gliadin at lower concentrations, optical nano biosensors using an indirect immunoassay method for gliadin detection was designed and fabricated. For this, polycaprolactone (PCL) nano- to micro-beads were fabricated as a platform for the gliadin antigen which were optimized and... 

    ZnO nanoparticle/nanorod-based label-free electrochemical immunoassay for rapid detection of MMP-9 biomarker

    , Article Biochemical Engineering Journal ; Volume 164 , 2020 Shabani, E ; Abdekhodaie, M. J ; Mousavi, S. A ; Taghipour, F ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A label-free electrochemical biosensor was developed for the rapid detection of the matrix metalloproteinase 9 (MMP-9) biomarker on the basis of antibody immobilizing on the zinc oxide (ZnO) nanoparticle and ZnO nanorod electrodes. The charge transfer resistance (Rct) of the electrodes was used as the indicator for MMP-9 concentration, which was obtained through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The ZnO nanorod-based biosensor exhibited linear behavior in the MMP-9 concentration range of 1–1000 ng/ml, which is a wider range than the available concentration ranges for most of the conventional methods. The biosensor sensitivity was 32.5 μA/(decade × cm2)... 

    Laboratory detection methods for the human coronaviruses

    , Article European Journal of Clinical Microbiology and Infectious Diseases ; 2020 Shabani, E ; Dowlatshahi, S ; Abdekhodaie, M. J ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    Coronaviruses are a group of envelop viruses which lead to diseases in birds and mammals as well as human. Seven coronaviruses have been discovered in humans that can cause mild to lethal respiratory tract infections. HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1 are the low-risk members of this family and the reason for some common colds. Besides, SARS-CoV, MERS-CoV, and newly identified SARS-CoV-2, which is also known as 2019-nCoV, are the more dangerous viruses. Due to the rapid spread of this novel coronavirus and its related disease, COVID-19, a reliable, simple, fast, and low-cost detection method is necessary for patient diagnosis and tracking worldwide. Human coronaviruses detection... 

    A turn-on graphene quantum dot and graphene oxide based fluorometric aptasensor for the determination of telomerase activity

    , Article Microchimica Acta ; Volume 186, Issue 12 , 2019 ; 00263672 (ISSN) Kazemi, E ; Bagheri, H ; Norouzian, D ; Sharif University of Technology
    Springer-Verlag Wien  2019
    Abstract
    A turn-on fluorometric assay is described for determination of the activity of enzyme telomerase. For this purpose, graphene quantum dots (GQDs) were first modified with the telomeric sequence (5′-amino-AATCCGTCGAGCAGAGTT-3′) via a condensation reaction. Injection of graphene oxide causes instant quenching of the blue fluorescence of the GQDs. Addition of cell extract containing telomerase, triggers the extension of telomer via addition of specific sequence (TTAGGG)n to its 3′ end. Fluorescence, best measured at excitation/emission wavelengths of 390/446 nm, is subsequently restored due to folding of the extended telomeric sequence into G-quadruplex structure. The method was applied to the... 

    The highly sensitive impedimetric biosensor in label free approach for hepatitis B virus DNA detection based on tellurium doped ZnO nanowires

    , Article Applied Physics A: Materials Science and Processing ; Volume 125, Issue 9 , 2019 ; 09478396 (ISSN) Khosravi Nejad, F ; Teimouri, M ; Jafari Marandi, S ; Shariati, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The highly sensitive impedimetric biosensor in label free approach for hepatitis B virus DNA (HPV DNA) detection based on tellurium doped ZnO nanowires was fabricated. The NWs were grown by hybrid thin film oxidation in the physical vapor deposition (PVD) mechanism. The morphology characterization of the synthesized NWs was performed by field emission scanning electron microscopy (FESEM) and the images demonstrated that the diameter and the length of the materialized NWs were around 50 nm and several micrometers, respectively. The high-resolution transmission electron microscopy (HRTEM) image indicated that the fabricated NWs were crystalline and their phase characterization was validated by... 

    Electrochemical sensing based on carbon nanoparticles: A review

    , Article Sensors and Actuators, B: Chemical ; Volume 293 , 2019 , Pages 183-209 ; 09254005 (ISSN) Asadian, E ; Ghalkhani, M ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The emergence of nanoscience and nanotechnology has opened up new horizons to researchers. In this regard, carbon nanomaterials are considered as the cornerstone of numerous investigations. Among various carbon nanostructures, “Carbon nanoparticles (CNPs)” have attracted a great deal of attention during the past few years due to their unique properties such as high surface area, non-toxicity, biocompatibility as well as simple and low-cost synthetic procedures via environmentally friendly routes. Thanks to these properties along with their interesting optical behavior, CNPs have found diverse applications in the fields of bioimaging, nanomedicine, photo/electro-catalysis, and bio/chemical... 

    Development of a sensitive diagnostic device based on zeolitic imidazolate frameworks-8 using ferrocene-graphene oxide as electroactive indicator for pseudomonas aeruginosa detection

    , Article ACS Sustainable Chemistry and Engineering ; Volume 7, Issue 15 , 2019 , Pages 12760-12769 ; 21680485 (ISSN) Shahrokhian, S ; Ranjbar, S ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Since Gram-negative bacteria have a predominant role in nosocomial infections, there are high demands to develop a fast and sensitive method for diagnosis of bacteria in clinical samples. To address this challenge, we designed a novel electrochemical biosensor based on aptamers immobilized in engineered zeolitic imidazolate Framework-8 (ZIFs-8) via EDC-NHS chemistry. Cyclic voltammetry and electrochemical impedance spectroscopy techniques were conducted to monitor the electrochemical characterization. With respect to unique π-πinteractions between aptamer and graphene oxide (GO), the differential pulse voltammetry technique was applied with ferrocene-graphene oxide (Fc-GO) as an... 

    Interpretation of the electrochemical response of a multi-population biofilm in a microfluidic microbial fuel cell using a comprehensive model

    , Article Bioelectrochemistry ; Volume 128 , 2019 , Pages 39-48 ; 15675394 (ISSN) Mardanpour, M. M ; Saadatmand, M ; Yaghmaei, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The present study investigates the diversification and dynamic behavior of a multi-population microfluidic microbial fuel cell (MFC) as a biosensor. The cost effective microfluidic MFC coupled to a comprehensive model, presents a novel platform for monitoring chemical and biological phenomena. The importance of competition among different microbial groups, hierarchical biochemical processes, bacterial chemotaxis and different mechanisms of electron transfer were significant considerations in the present model. The validation of the model using experimental data from a microfluidic MFC shows an appropriate match with the hierarchal biodegradation processes of a complex substrate as well as... 

    Different PES nanofibrous membrane parameters effect on the efficacy of immunoassay performance

    , Article Polymers for Advanced Technologies ; Volume 30, Issue 8 , 2019 , Pages 1968-1977 ; 10427147 (ISSN) Mahmoudifard, M ; Vossoughi, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    The contribution of electrospun nanofibrous membranes (e.NFMs) in the biosensing platforms opens up a new prospect for the invention of faster and more sensitive analytical devices. In this paper, we utilized e.NFM of polyethersulfone (PES) as a solid substrate for the protein immobilization through two different approaches: physical and covalent. Scanning electron microscopy (SEM) and Fourier-transform-infrared (FTIR) tests were performed to study the effect of plasma treatment on protein immobilization efficacy. Moreover, taking advantage of ELISA technique, the influence of different parameters, namely, nanofibers diameter, membrane thickness, plasma treatment time, an incubation time of...