Loading...
Search for: solar-power
0.007 seconds
Total 170 records

    Experimental investigation of a novel passive solar still with additional condensation on sidewalls

    , Article Desalination and Water Treatment ; Volume 89 , 2017 , Pages 29-35 ; 19443994 (ISSN) Shafii, M. B ; Favakeh, A ; Faegh, M ; Sadrhosseini, H ; Sharif University of Technology
    Abstract
    In common solar stills, a portion of the produced vapor undesirably condenses on the sidewalls and runs down to be mixed with saline water in the basin. This results in lower distillate output of the system. The aim of this study was to improve the condensation process of a solar still without complicating its structure to collect the water condensed on sidewalls. The proposed solar still was made of two containers nested one inside the other such that the smaller container, containing saline water, fitted easily into the larger container. There was a thin gap between the two in which condensed liquid on sidewalls, ran down and was collected from the bottom of the larger container. The... 

    Evaluation of optimal occasional tilt on photovoltaic power plant energy efficiency and land use requirements, Iran

    , Article Sustainability (Switzerland) ; Volume 13, Issue 18 , 2021 ; 20711050 (ISSN) Fathi, A ; Bararzadeh Ledari, M ; Saboohi, Y ; Sharif University of Technology
    MDPI  2021
    Abstract
    The paper studies the optimum panel horizontal orientation angle toward the Sun and the optimum time interval of the panel’s movement. The optimum time intervals or panel movement can change the rate of input energy to the panel surface in Iran. For this purpose, a neural network has been trained to estimate the intensity of solar radiation in Iran. After model validation, the intensity of solar radiation has been estimated by selecting adequate geographical regions. Based on the intensity of sunlight, Iran has been divided into ten regions. In these regions, 40 cities have been randomly selected to study the effect of the panel’s angle variations within appropriate time inter-vals, as well... 

    Theoretical and Numerical Simulation of a Solar Collector for Direct Steam Generation

    , M.Sc. Thesis Sharif University of Technology Mehrabi, Pouria (Author) ; Morad, Mohammad Reza (Supervisor)
    Abstract
    Direct steam generation (DSG) process using linear FRESNEL collectors has been developed widely in recent years and is one of the most promising solar technologies for thermal power generation, Industrial processes and domestic usage. In this process water as heat transfer fluid (HTF) is heated through a solar field. Continuous breakthroughs are being achieved on improvement of these collectors. A multi-phase CFD model is developed to calculate the wall temperature of linear Fresnel absorber tubes and fluid properties including temperature, velocity, and pressure. In order to design the collector field and identify the critical condition such as overheating of the absorber tubes, modeling of... 

    Feasibility Study and Conceptual Design of Solar Energy Source for Surface Train System

    , M.Sc. Thesis Sharif University of Technology Maleki, Sina (Author) ; Durali, Mohammad (Supervisor)
    Abstract
    Advancements in solar powered systems bring about the possibility for today’s transportation systems to be operated and driven by such a clean and renewable source of energy. The challenging point of this combination is to draw high power levels from such a low power density source of energy. As a result, employing an efficient power storage and management system becomes inventible. The subjects of this research are to design a grid connected system and evaluate its performance and feasibility in a real application (Tehran- Mehrshahr surface train – Tehran 5th Metro Line). The task includes sixteen pairs of DC transmission lines which are powered by CIGS solar module technology and four... 

    Introducing a dimensionless number as tank selector in hybrid solar thermal energy storage systems

    , Article Evolutionary Ecology ; Volume 25, Issue 4 , 2011 , Pages 871-876 ; 02697653 (ISSN) Mohamadi, Z. M ; Zohoor, H ; Sharif University of Technology
    2011
    Abstract
    Using hybrid energy storage system is a method for increasing the storage capability of solar thermal energy. If multiple energy storage devices with complementary performance characteristics are used together, the resulting system will be a 'Hybrid Energy Storage System'. In other words, a Hybrid Energy Storage System (HESS) has several media available for storage at any time. In this way, increase in storable energy is obtained without increasing collectors' area. When there are more than one storage mediums, the system should be able to choose the best medium for storing energy according to the conditions. In the previous works, an optimizer program was used to find the proper medium... 

    Optimization of a novel photovoltaic thermal module in series with a solar collector using Taguchi based grey relational analysis

    , Article Solar Energy ; Volume 215 , 2021 , Pages 492-507 ; 0038092X (ISSN) Kazemian, A ; Parcheforosh, A ; Salari, A ; Ma, T ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The solar collectors absorb solar irradiation and then produce thermal energy; however, they cannot generate electrical power. Electricity and thermal energy can be produced by the photovoltaic thermal module, simultaneously, while the outlet temperature of the photovoltaic thermal module is not usually high enough to provide thermal requirements of a building such as hot water or space heating. This work proposes a novel compound system created by the connection of a solar collector in series with a photovoltaic thermal module to resolve the issue of low outlet temperature in the photovoltaic thermal module and lack of electrical power in solar collectors. To examine the feasibility of this... 

    Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach

    , Article Renewable Energy ; Volume 186 , 2022 , Pages 889-903 ; 09601481 (ISSN) Jahangiri, M ; Rezaei, M ; Mostafaeipour, A ; Goojani, A.R ; Saghaei, H ; Hosseini Dehshiri, S. J ; Hosseini Dehshiri, S. S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Renewable hydrogen production plays a key role in transitioning to a hydrogen economy. For this, developing countries are encouraged to keep up with industrialized nations. As such, this study seeks to evaluate the potential of all capital cities of Iran in terms of solar-based hydrogen production and prioritize the nominated alternatives. This step is highly valued because finding the most suitable place for this purpose can lead to substantial outcomes and consequently avoid failure. Therefore, here a 20-kW solar power plant is simulated by PVsyst 6.7 software and meteorological data of 31 capital cities is extracted using Meteonorm 7.1 software. Considering all losses associated with... 

    Linear parabolic trough solar power plant assisted with latent thermal energy storage system: A dynamic simulation

    , Article Applied Thermal Engineering ; Volume 161 , 2019 ; 13594311 (ISSN) Jafari Mosleh, H ; Ahmadi, R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    One of the efficient solar energy harvesting technics is the parabolic trough concentrated solar power plant. However, if the concentrated solar power plant were not equipped with a storage system, the power plant capacity factor would be deficient. Latent thermal energy storage system using phase change material (PCM) is a high energy density storage system to provide durable energy with a constant temperature. In this study, first, a dynamic analysis is performed implementing TRNSYS software on the parabolic trough concentrated solar power plant located in Shiraz, Iran. Consequently, this system is assisted by the latent thermal energy storage system to improve its performance and capacity... 

    A new application of measurement of alternatives and ranking according to compromise solution (MARCOS) in solar site location for electricity and hydrogen production: A case study in the southern climate of Iran

    , Article Energy ; Volume 261 , 2022 ; 03605442 (ISSN) Hosseini Dehshiri, S. S ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In recent years, declining fossil fuel reserves and increasing environmental concerns led to higher utilization of renewable energy source (RES). One of the RES is Solar energy which is abundantly found in different areas of the globe, particularly in Iran. The aim of this research is to select a suitable site for constructing a solar power plant to generate electricity-hydrogen in southern Iran, Kerman province. For this purpose, a new hybrid Multi criteria decision making method is used. The Stepwise Weight Assessment Ratio Analysis (SWARA)method is used to weigh the criteria and the Measurement of alternatives and ranking according to Compromise solution (MARCOS)method is used to rank... 

    Ranking locations for hydrogen production using hybrid wind-solar: a case study

    , Article Sustainability (Switzerland) ; Volume 13, Issue 8 , 2021 ; 20711050 (ISSN) Almutairi, K ; Mostafaeipour, A ; Jahanshahi, E ; Jooyandeh, E ; Himri, Y ; Jahangiri, M ; Issakhov, A ; Chowdhury, S ; Hosseini Dehshiri, J ; Hosseini Dehshiri, S ; Techato, K ; Sharif University of Technology
    MDPI  2021
    Abstract
    Observing the growing energy demand of modern societies, many countries have rec-ognized energy security as a looming problem and renewable energies as a solution to this issue. Renewable hydrogen production is an excellent method for the storage and transfer of energy generated by intermittent renewable sources such as wind and solar so that they can be used at a place and time of our choosing. In this study, the suitability of 15 cities in Fars province, Iran, for renewable hydrogen production was investigated and compared by the use of multiple multi-criteria decision-making methods including ARAS, SAW, CODAS, and TOPSIS. The obtained rankings were aggregated by rank averaging, Borda... 

    Comparing different scenarios for thermal enhanced oil recovery in fractured reservoirs using hybrid solar-gas steam generators, a simulation study

    , Article Society of Petroleum Engineers - SPE Europec Featured at 78th EAGE Conference and Exhibition, 30 May 2016 through 2 June 2016 ; 2016 ; 9781613994573 (ISBN) Mirzaie Yegane, M ; Bashtani, F ; Tahmasebi, A ; Ayatollahi, S ; Al Wahaibi, Y. M ; Sharif University of Technology
    Society of Petroleum Engineers  2016
    Abstract
    The application of the renewable energy sources, especially solar energy, for thermal enhanced oil recovery methods as an economical and environmental valuable technique has received many attractions recently. Concentrated Solar Power systems are capable of producing substantial quantities of steam by means of focused sunlight as the heat source for steam generation. This paper aims to investigate viability of using this innovative technology in fractured reservoirs to generate steam instead of using conventional steam generators. A synthetic fractured reservoir with properties similar to those of giant carbonate oil reserves in the Middle East was designed by using commercial thermal... 

    A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design

    , Article Renewable Energy ; Volume 113 , 2017 , Pages 822-834 ; 09601481 (ISSN) Mohsenzadeh, M ; Shafii, M. B ; Jafari mosleh, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The use of solar energy concentration systems for achieving performance enhancements in the Photovoltaic/thermal hybrid solar systems and reduction of initial costs is an idea that has been studied for years. In this article a new structure for parabolic trough photovoltaic/thermal collector is proposed and its thermal and electrical performances are experimentally investigated. The receiver of this concentrator contains a triangular channel with an outer surface covered with photovoltaic cells and thermoelectric modules with a specific arrangement so that in addition to absorbing heat, a larger portion of the solar radiation is directly converted to electricity. Hence, the performance of... 

    Numerical analysis of photovoltaic solar panel cooling by a flat plate closed-loop pulsating heat pipe

    , Article Solar Energy ; Volume 206 , 2020 , Pages 455-463 Alizadeh, H ; Alhuyi Nazari, M ; Ghasempour, R ; Shafii, M. B ; Akbarzadeh, A. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Photovoltaic (PV) panels provide a suitable way for the direct conversion of solar energy into electricity. The electrical output and efficiency of PV modules are dependent on working temperature. The present study contributes to investigate the efficiency of utilizing a flat plate closed-loop pulsating heat pipe (CLPHP) to cool down a PV panel in both thermal and economic aspects. Accordingly, a numerical investigation is employed to obtain the surface temperature and electrical gain of the PV panel through four scenarios, including natural cooling without additional equipment, CLPHP-based passive cooling, CLPHP-based active cooling, and a conventional flat plate cooling methods. The... 

    A feasibility study of solar-powered reverse osmosis processes

    , Article Desalination ; 2020 Rahimi, B ; Shirvani, H ; Alamolhoda, A. A ; Farhadi, F ; Karimi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The use of solar-powered reverse osmosis desalination systems is a sustainable and environmentally friendly solution in the desalination industry. However, there are some substantial technical and economic challenges due to the intermittency and fluctuation of solar energy. Recent technological improvement and feed-in tariff policies enable these systems to be competitive with conventional grid-connected reverse osmosis systems. In this paper, a feasibility study of the integration of solar panels with the grid to power small-scale reverse osmosis systems (namely up to 2000 m3/day) is conducted in Iran, as a country with a low price of electricity. For this purpose, a city located on the... 

    Optimal design of renewable integrated heat and electricity supply systems with genetic algorithm: household application in Iran

    , Article International Journal of Environmental Science and Technology ; Volume 17, Issue 4 , 2020 , Pages 2185-2196 Rezaei Mirghaed, M ; Saboohi, Y ; Sharif University of Technology
    Springer  2020
    Abstract
    The objective of the present study is the development of an optimization model for identifying the best configuration of renewable-based integrated energy systems. The system includes a combination of renewable energy systems such as wind, solar, hydropower and hydrogen production, storage facilities and conventional fossil-fuel generators. The developed tool consists of various modules where water heating assumes the utilization of waste energy as an option. Furthermore, the application, which is demonstrated for a case study in Tehran, has been considered. The power exchange with the distribution network and injection of hydrogen produced from excess renewable sources into gas network are... 

    On the performance of inclined rooftop solar chimney integrated with photovoltaic module and phase change material: A numerical study

    , Article Solar Energy ; Volume 211 , 2020 , Pages 1159-1169 Salari, A ; Ashouri, M ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In an attempt to prolong the performance of the conventional Solar Chimney (SC) and enhance its efficiency, this contribution presents a kind of novel compound SC with the Photovoltaic (PV) module and Phase Change Material (PCM) called the SC-PV-PCM system. Using PCM not only improves the PV module performance but also extends the productive period of the SC. A three-dimensional quasi-steady computational fluid dynamics (CFD) model of the proposed system is developed. The developed model is used to investigate the effect of using PCMs with different melting points on the performance of the proposed system. It is demonstrated that the RT-50 provides superior performance among the studied... 

    A feasibility study of solar-powered reverse osmosis processes

    , Article Desalination ; Volume 500 , 2021 ; 00119164 (ISSN) Rahimi, B ; Shirvani, H ; Alamolhoda, A. A ; Farhadi, F ; Karimi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The use of solar-powered reverse osmosis desalination systems is a sustainable and environmentally friendly solution in the desalination industry. However, there are some substantial technical and economic challenges due to the intermittency and fluctuation of solar energy. Recent technological improvement and feed-in tariff policies enable these systems to be competitive with conventional grid-connected reverse osmosis systems. In this paper, a feasibility study of the integration of solar panels with the grid to power small-scale reverse osmosis systems (namely up to 2000 m3/day) is conducted in Iran, as a country with a low price of electricity. For this purpose, a city located on the... 

    Modeling and techno-economic study of a solar reverse osmosis desalination plant

    , Article International Journal of Environmental Science and Technology ; Volume 19, Issue 9 , 2022 , Pages 8727-8742 ; 17351472 (ISSN) Ebrahimpour, B ; Hajialigol, P ; Boroushaki, M ; Shafii, M. B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this research, the design of a solar reverse osmosis desalination plant was investigated by integrating various components using TRNSYS and ROSA software. To this goal, a two-stage reverse osmosis system with 50% recovery in the city of Chabahar was modeled. The calculations were performed in three different case studies, i.e., a photovoltaic power plant, a solar collector power plant with Organic Rankine Cycles, and a photovoltaic thermal power plant with Organic Rankine Cycles, with the reverse osmosis desalination plant being a novel investigation. Water production and electrical energy generation of each case study were evaluated both on a daily and yearly bases. The simulation... 

    Optimal design of solar concentrator in multi-energy hybrid systems based on minimum exergy destruction

    , Article Renewable Energy ; Volume 190 , 2022 , Pages 78-93 ; 09601481 (ISSN) Tavakol Moghaddam, Y ; Saboohi, Y ; Fathi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The paper presents a systematic approach to designing an imaging dish for a concentrator photovoltaic (CPV) system to minimize exergy destruction. The designed CPV system uniformly distributes light rays on the receiver (TPV/multi-junction PV) to enhance the conversion technology efficiency and lifetime. To this end, a parametric dish is designed using imaging optics and the numerical solution of a differential equation. Afterward, a Monte Carlo simulation is used to estimate the output energy and exergy of the CPV system with the parametric dish. Finally, an optimization algorithm finds the optimal design parameters to minimize the system's exergy destruction. The optimal design leads to a... 

    Application of hybrid nanofluids in a novel combined photovoltaic/thermal and solar collector system

    , Article Solar Energy ; Volume 239 , 2022 , Pages 102-116 ; 0038092X (ISSN) Kazemian, A ; Salari, A ; Ma, T ; Lu, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Because of the low outflow temperature of the conventional photovoltaic thermal systems and lack of electrical production of the solar thermal collectors, a novel combined system is proposed to solve the two mentioned drawbacks. This novel system is achieved by connecting a photovoltaic thermal unit to a solar thermal collector in series. To increase the overall performance of this novel combined system, different hybrid nanofluids include (1) multiwall carbon nanotube-aluminum oxide (2) multiwall carbon nanotube-silicon carbide (3) graphene-aluminum oxide, and (4) graphene-silicon carbide are compared. The investigation is performed based on the three-dimensional simulation, and the...