Loading...
Search for: permanent-magnets
0.01 seconds

    Utilization of Airborne Wind Energy in Iran

    , M.Sc. Thesis Sharif University of Technology Hodjat, Ahmad (Author) ; Vesaghi, Mohammad Ali (Supervisor) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    A Flying Electric Generator (FEG) can be a wind turbine which operates at high altitudes, where there is a continuous fast flow of air and converts wind energy to electrical power.The related field is an interdisciplinary area and is mostly related to the Aerospace Engineering and Energy Conversion. We focused on Iran, as one of the few lands in the northern hemisphere that has a high overall amount of high altitude wind energy for at least half of the year over it, according to the information of atlas of airborne wind energy in this work.So to install the FEGs in Iran, we had to find, places with a safe aerial space overhead which grant us reliable spots over country. These places found by... 

    Direct Torque Control of Permanent Magnet Synchronous Machine Using Nonlinear Flux Observer

    , M.Sc. Thesis Sharif University of Technology Yaghoubi, Mokhtar (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Direct Torque Control (DTC) is one of the vector methods to control Permanent Magnet Synchronous Machines (PMSM). In order to achieve an appropriate control in vector control methods, an accurate estimation of flux is indispensable. Flux estimation should be fulfilled in a wide speed range without considerable dependence on motor parameters. Prevalent flux estimation methods are based on integration of stator voltage which is not feasible in low speed, or performed based on assumption of decoupled equations on d and q axis which is not precise for applications with fast dynamic. Different flux estimation methods are investigated in this thesis with the aim of improving the flux estimation in... 

    Direct Speed Control of Permenant Magnet Synchronous Machine

    , M.Sc. Thesis Sharif University of Technology Dana, Shekoofe (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Accurate and fast position controlling is an important issue in today’s industrial needs. Drives used for position control require fast dynamics on speed control. Cascade linear controllers have sluggish response due to bandwidth limitations on speed and current loop. These structures limit the dynamics above all in high power applications where the switching frequency is low. In this thesis, deadbeat direct speed control is proposed, which overcomes limitations by cascade loops resulting in high-speed control dynamics. This approach uses a model of the plant to generate the control signals. According to measured speed and currents, the controller specifies the best voltage vector in order... 

    Modeling and Control of Magnetically-Levitated Iron-Less Planar Actuators

    , M.Sc. Thesis Sharif University of Technology Haddadi, Aboutaleb (Author) ; Ranjbar, Ali Mohammad (Supervisor)
    Abstract
    Flying has fascinated mankind for ages. Nowadays, planar actuators are performing the same task as that, once a dream, of a flying magic carpet found in Persian mythology. Magnetically levitated planar actuators (MLPAs) consist of two parts; a moving part, and a stationary part. In most applications the moving part which is an array of permanent magnets (PMs) produces a magnetic flux density in the air-gap, and the stationary part, an array of current carrying coils, produces force and torque when it is exposed to the magnetic flux of the PM array. These actuators have been utilized in industry in applications where precise positioning is important. In recent years however, they have found... 

    Optimization of the New Structure of the Reluctance Motor to Increase the Efficiency and Power-Density by Experimental Methods

    , M.Sc. Thesis Sharif University of Technology Mohammadi Fesharaki, Alireza (Author) ; Sayyaadi, Hassan (Supervisor)
    Abstract
    Permanent magnets play an essential role in the structure of the electric motor, but due to limited resources, many efforts have been made to meet the need for them. One of the most important types of non-permanent electric motors is reluctance motors. Despite their antiquity in design, torque ripples have led to the limited use of reluctance motors, but advances in science have made it possible to control these ripples.As a result of the major advantages such as low manufacturing costs, high efficiency, and uncomplicated structure, these motors have been the subject of many researches. One way to eliminate the problem of torque ripples is to increase the number of teeth, but in the common... 

    Nonlinear Analysis of Vibration of Tapered Piezo Electromagnetic Beam in Presence of External Permanent Magnet in Order to Energy Harvesting Improvement

    , M.Sc. Thesis Sharif University of Technology Babaee Nikoo, Mohammad Javad (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    With the increasing development in the field of electronics and information technology, the required dimensions and power of electronic devices and sensors have decreased. The range of applications of these electronic devices is very large, which is the product of technological progress development. There is a problem in the development and application of such devices, the supply of electrical power used in them, especially in the set of wireless sensors, this problem is more significant.The use of piezoelectric materials is one of the methods of converting mechanical energy into electrical energy. The voltage generated by the piezoelectric material can be used to charge the capacitor or... 

    Localization of Magnetic Catheter Tip Using an Array of Magnetic Sensors

    , M.Sc. Thesis Sharif University of Technology Sharifi Sadati, Ali (Author) ; Nejat Pishkenari, Hossein (Supervisor)
    Abstract
    Minimally invasive surgery is highly valued mainly due to the reduction of the patient’s recovery period. Catheters are among the most important tools in minimally invasive surgeries. Catheter is a flexible tool that has the ability to pass through difficult paths. In common localization methods, fluoroscopy is used to determine the position of the catheter’s tip. One main disadvantage of this method is that it is very dangerous for therapists who are exposed to X-ray radiation for long periods of time. A magnetic catheter is created by adding a magnet to the end of the catheter. The possibility of guiding magnetic catheter by an external magnetic field, controlling the applied force and... 

    Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet–inserted cavity

    , Article Journal of Magnetism and Magnetic Materials ; Volume 442 , 2017 , Pages 270-278 ; 03048853 (ISSN) Ashouri, M ; Behshad Shafii, M ; Sharif University of Technology
    Abstract
    The magnetic convection heat transfer in an obstructed two-dimensional square cavity is investigated numerically. The walls of the cavity are heated with different constant temperatures at two sides, and isolated at two other sides. The cavity is filled with a high Prandtl number ferrofluid. The convective force is induced by a magnetic field gradient of a thermally insulated square permanent magnet located at the center of the cavity. The results are presented in the forms of streamlines, isotherms, and Nusselt number for various values of magnetic Rayleigh numbers and permanent magnet size. Two major circulations are generated in the cavity, clockwise flow in the upper half and... 

    Design, analysis, and fabrication of a direct drive permanent NdFeB magnet synchronous motor for precision position control

    , Article IET Electric Power Applications ; Volume 14, Issue 8 , 2020 , Pages 1438-1445 Hariri, A. M ; Damaki Aliabad, A. A ; Ghafarzadeh, M ; Shamlou, S ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    Direct drive motors have the excellent ability for precision position control due to their direct connection to load and elimination of the gearbox and pulley backlash. Among the direct drive motors, permanent NdFeB magnet synchronous motors (PMSMs) are the best choice for control systems due to their high efficiency, high power density, good dynamic behaviour, and excellent controllability. This study deals with the design, analysis, and fabrication of a direct drive PMSM for precision position control. To reach this aim, the designed motor should have very low cogging torque and torque ripple to avoid the motor deviation at the target point. To achieve these purposes, at first, a suitable... 

    An electromagnetic design of slotless variable reluctance PM-Resolver

    , Article IEEE Transactions on Industrial Electronics ; 2022 , Pages 1-10 ; 02780046 (ISSN) Bahari, M ; Tootoonchian, F ; Mahmoudi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper proposes a novel design of the variable reluctance permanent magnet (VRPM) resolvers. It utilizes a slotless stator to reduce the resolver volume. The proposed design overcomes the complex structure of windings by replacing them with magnetic flux measurement units (MFMU). The new design eliminates the computationally-expensive demodulation process of output signals by relying on none-modulated signals. An analytical model based on the nonlinear magnetic equivalent circuit (MEC) method is used to extract the output signals of the proposed resolver design. The accuracy of applied analytical model is verified against the time-stepping finite-element method (TSFEM). An optimization... 

    Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field

    , Article Journal of Magnetism and Magnetic Materials ; Volume 429 , 2017 , Pages 314-323 ; 03048853 (ISSN) Fadaei, F ; Shahrokhi, M ; Molaei Dehkordi, A ; Abbasi, Z ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this article, three-dimensional (3D) forced-convection heat transfer of magnetic nanofluids in a pipe subject to constant wall heat flux in the presence of single or double permanent magnet(s) or current-carrying wire has been investigated and compared. In this regard, laminar fluid flow and equilibrium magnetization for the ferrofluid were considered. In addition, variations of magnetic field in different media were taken into account and the assumption of having a linear relationship of magnetization with applied magnetic field intensity was also relaxed. Effects of magnetic field intensity, nanoparticle volume fraction, Reynolds number value, and the type of magnetic field source... 

    Sensor fault-tolerant scheme for IPM synchronous motor drives via nonlinear observer

    , Article AUPEC'09 - 19th Australasian Universities Power Engineering Conference: Sustainable Energy Technologies and Systems, 27 September 2009 through 30 September 2009, Adelaide ; 2009 ; 9780863967184 (ISBN) Nademi, H ; Farshidnia, A ; Keivanian, R ; Sharif University of Technology
    Abstract
    This paper describes a control scheme that allows an IPMS motor drive system to operate in the event of current and speed sensor faults. This task can be achieved by two control strategies: a nominal performance controller and a fault detection part. The nominal controller combines field oriented control and addresses fault tolerance scheme. Fault-tolerant strategy will operate in parallel with the system until a fault is detected. This approach is based on the adaptive backstepping observer. Stator resistance as possible source of system uncertainty is taken into account under different operating conditions. Sensors failure are detected and developed observer is used to estimate currents... 

    Design of Three-Phase to Single-phase Converter Suitable for Small Range Wind Turbine with PMSG

    , M.Sc. Thesis Sharif University of Technology Shamsnia, Ali (Author) ; Mokhtari, Hossein (Supervisor)
    Abstract
    In this research a special Three-Phase to Single-Phase converter has been proposed to connect a three-phase Permanent Magnet Synchronous Generator (PMSG) of a wind turbine to a single-phase network. Common back-to-back converter used for this application employs a bulk capacitor in its DC link to generate the pulsating component of the single-phase side instantaneous power. This capacitor is costly and reduces system overall reliability. This problem is alleviated in this work by providing the single-phase load pulsating power using the PMSG large inductances. The proposed system leaves the PMSG torque ripple-free while providing the single-phase load power. With the help of this method,... 

    Analysis and Improvement of The Low-Voltage Ride Through Capability of Permanent-Magnet Synchronous Generator-Based Wind Turbines

    , M.Sc. Thesis Sharif University of Technology Asadi Khoshouei, Ebrahim (Author) ; Parniani, Mostafa (Supervisor)
    Abstract
    Permanent-magnet synchronous generators have attracted more attention in recent years due to their special advantages which make them a suitable option for variable-speed wind turbines.Low-voltage ride through capability is one of the main concerns in widespread use of wind turbines in electric grids. Nowadays wind turbines are expected to remain connected to the grid during voltage dips and support the voltage recovery process by supplying reactive power.This thesis aims at behavior analysis and performance improvement of permanent-magnet synchronous generator-based wind turbines during grid faults. A simple method is presented to overcome the over current problem of the grid-side converter... 

    Design and Implementation of High Efficient Power Converter for Small PM Synchronous Wind Generator

    , M.Sc. Thesis Sharif University of Technology Rezazadeh Sotudeh, Ghasem (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    The global wind energy capacity has been increased rapidly in the past few years and became the fastest developing renewable energy technology. Small Permanent Magnet Synchronous Generators (PMSG’s) are widely used in low power wind turbines because they don’t need a gearbox and complicated control systems. In order to inject the electrical power generated by PMSG to the grid, an AC-DC-AC power electronic converter is required. A novel low cost efficient AC-DC converter is proposed to obtain the maximum power per ampere of PMSG. The new structure for the rectifier stage of the AC/AC converter is based on a DCM operated SEPIC converter and can convert the variable voltage and frequency of... 

    Analysis and Control of Circulating Current in High-Power Full Converter Wind Turbines with Modular Structure

    , M.Sc. Thesis Sharif University of Technology Ravanji, Mohammad Hassan (Author) ; Parniani, Mostafa (Supervisor)
    Abstract
    This thesis aims at developing control system of a full converter wind turbine with modular and parallel back-to-back converters. Modular structures and paralleling of power electronic converters are the state-of-the-art methods for increasing their transferable power to the grid. Technological advances in high power wind turbines, especially for the offshore installations, which contain permanent magnet synchronous generators with back-to-back full converters, promote the use of modular structures.
    In addition to developing the regular control systems of wind turbines for modular structures, selection of appropriate structures, power sharing between parallel converters and mitigation of... 

    Optimal Design of Permanent Magnet Vernier Generator for Wind Power Plants Application

    , M.Sc. Thesis Sharif University of Technology Esmailoghli, Habib (Author) ; Boroushaki, Mehrdad (Supervisor)
    Abstract
    In recent decades, renewable energy resources (especially wind power as the fastest-growing energy source) have increasingly been employed for providing electrical energy all over the world given to the rising energy demands, reduction in non-renewable fossil fuels as well as severe restrictions applied to the utilization of these fuels because of their contribution in environmental pollution, generating greenhouse gas emissions, and consequently earth warming. The main factors in the development of wind energy systems to date are the easy access to this energy source in all seasons and its cost-effectiveness compared to other counterparts. One of the key components utilized for converting... 

    Position Control of Magnetic Catheter with External Permanent Magnet

    , M.Sc. Thesis Sharif University of Technology Gholamali Sinaki, Mahbod (Author) ; Selk Ghafari, Ali (Supervisor) ; Nejat Pishkenari, Hossein (Supervisor)
    Abstract
    The precise positioning of magnetic catheters is critical for a range of medical procedures, ensuring efficacy while minimizing potential complications. This research delves into the position control of a magnetic catheter influenced by an external permanent magnet. Due to the intricate and complex equations describing the plant's behavior, a neural network approach was deemed suitable for modeling. Using a 5 degree of freedom manipulator carrying an external permanent magnet, data was gathered from real-world positionings, tracking the coordination of the magnetic catheter's end. These data points served to train the neural network, subsequently allowing for an effective simulation of the... 

    An analytical 3-D model for calculating eddy-current damping force for a magnetic levitation system with permanent magnet

    , Article IEEE Transactions on Magnetics ; Volume 48, Issue 9 , Sept , 2012 , Pages 2472-2478 ; 00189464 (ISSN) Ebrahimian, M ; Khodabakhsh, M ; Vossoughi, G ; Sharif University of Technology
    IEEE  2012
    Abstract
    An analytical solution for obtaining steady-state eddy-current-based force on a levitated permanent magnet above a plate with linear conductivity in the field of an electromagnet having cylindrical symmetry is presented in this paper. In literature, the force due to eddy current in this levitation system have been used for high precision positioning of a levitated permanent magnet without providing an explicit analytical model. In this system, a change in the coil's current and also the motion of the levitated permanent magnet in 3-D space generate eddy current in the plate. A novel explicit solution for obtaining damping forces due to these eddy currents is obtained as a function of... 

    Approach for analytical modelling of axial-flux PM machines

    , Article IET Electric Power Applications ; Volume 10, Issue 6 , 2016 , Pages 441-450 ; 17518660 (ISSN) Taghipour Boroujeni, S ; Abedini Mohammadi, A ; Oraee, A ; Oraee, H ; Sharif University of Technology
    Institution of Engineering and Technology  2016
    Abstract
    In the presented paper, an analytical model is developed for calculation of the air gap magnetic flux density in the axial-flux surface-mounted PM machines. The slotting effect is taken into account in the air gap magnetic flux distribution, accurately. The main novelty of this study is replacing the stator teeth by some surface currents at the border of the removed stator teeth. The uniqueness theorem is applied to find the surface currents. The two-dimensional (2D) field solution in the slotless machine is solved easily by separation of variables method. The multi-slice quasi-3D method is applied for taking 3D nature of field distribution into account. In addition, the back-EMF, armature...