Loading...
Search for: hydrophobic-interactions
0.004 seconds

    Ab initio study of solvent effects on rate of 1,3-dipolar cycloadditions of benzonitrile oxide and various dipolarophiles

    , Article Journal of Chemical Research - Part S ; Issue 2 , 2003 , Pages 91-95 ; 03082342 (ISSN) Rajaeian, E ; Monajjemi, M ; Gholami, M. R ; Sharif University of Technology
    2003
    Abstract
    Ab initio molecular orbital calculations have been used to investigate the structures and the transition states of 1,3-dipolar cycloadditions between benzonitrile oxide with ethylene, cyclopentene, acrylonitrile and tetracyanoethylene in heptane and water: calculations reveal enhanced hydrogen bonding of a water molecule to the transition states for the cycloaddition 1,3-dipolar of reaction of benzonitrile oxide with cyclopentene, the optimal interaction energies being 0.7 kcal/mol more favourable for hydrogen bonding to the oxygen atom in the transition states than for the reactants  

    Wettability alteration modeling for oil-wet calcite/silica nanoparticle system using surface forces analysis: contribution of DLVO versus non-DLVO interactions

    , Article Industrial and Engineering Chemistry Research ; Volume 57, Issue 43 , 2018 , Pages 14482-14492 ; 08885885 (ISSN) Dehghan Monfared, A ; Ghazanfari, M. H ; Kazemeini, M ; Jamialahmadi, M ; Helalizadeh, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    In this work, application of silica nanoparticles for wettability alteration of initially oil-wet calcite was investigated through analysis of surface forces and DLVO theory. Doing so, the wettability and zeta potential of calcite surfaces were measured through the sessile drop method and an in-house experimental setup, respectively. Primary evaluation indicated that incorporating DLVO terms in the Frumkin-Derjaguin model was not sufficient to describe the wettability in an oil-wet calcite/nanofluid system. Sensitivity analysis showed that calculating the double-layer interaction using constant potential-constant potential boundaries along with structural hydrophobic forces (non-DLVO... 

    Evaluating the multifunctionality of a new modulator of zinc-induced Aβ aggregation using a novel computational approach

    , Article Journal of Chemical Information and Modeling ; Volume 61, Issue 3 , 2021 , Pages 1383-1401 ; 15499596 (ISSN) Asadbegi, M ; Shamloo, A ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The high concentration of zinc metal ions in Aβ aggregations is one of the most cited hallmarks of Alzheimer's disease (AD), and several substantial pieces of evidence emphasize the key role of zinc metal ions in the pathogenesis of AD. In this study, while designing a multifunctional peptide for simultaneous targeting Aβ aggregation and chelating the zinc metal ion, a novel and comprehensive approach is introduced for evaluating the multifunctionality of a multifunctional drugs based on computational methods. The multifunctional peptide consists of inhibitor and chelator domains, which are included in the C-terminal hydrophobic region of Aβ, and the first four amino acids of human albumin.... 

    Electrospun polyethersolfone nanofibrous membrane as novel platform for protein immobilization in microfluidic systems

    , Article Journal of Biomedical Materials Research - Part B Applied Biomaterials ; Volume 106, Issue 3 , April , 2018 , Pages 1108-1120 ; 15524973 (ISSN) Mahmoudifard, M ; Vossoughi, M ; Soudi, S ; Soleimani, M ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    In the present study, the feasibility of electrospun polyethersolfone (PES) nanofibrous membrane as the solid substrate for microfluidic based immunoassays to enhance the density of immobilized antibody on the surface of membrane was assessed. Conversely, the efficacy of antibody immobilization was compared by two different strategies as 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) coupling chemistry and hydrophobic interaction. Compared to conventional immunoassays carried out in plates or gels, microfluidic based immunoassays grant a lot of advantages such as a consumption of little samples and reagents, shorter analysis time, and higher efficiency.... 

    Impact of ionic composition on modulating wetting preference of calcite surface: Implication for chemically tuned water flooding

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 568 , 2019 , Pages 470-480 ; 09277757 (ISSN) Saeedi Dehaghani, A. H ; Badizad, M. H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Despite previous researches on ion-engineered waterflooding (IEWF), its underlying mechanisms are not fully understood, particularly in presence of additives, like surfactants. This paper concerned with the contribution of Ca 2+ , Mg 2+ , SO 4 2- and Na + into altering wettability of oil-wet carbonate minerals towards water preferred state. As a mechanistic study, an experiment workflow was conducted to probe the impact of ions' concentrations in SW, either with or without sodium dodecylbenzene sulfonate (SDBS) which is an anionic surfactant. At first, contact angle (CA) measurement was carried out to evaluate the degree of wettability reversal upon treating the oil-aged calcite slabs with... 

    Fe3O4@PAA@UiO-66-NH2 magnetic nanocomposite for selective adsorption of Quercetin

    , Article Chemosphere ; Volume 275 , 2021 ; 00456535 (ISSN) Ahmadijokani, F ; Tajahmadi, S ; Haris, M. H ; Bahi, A ; Rezakazemi, M ; Molavi, H ; Ko, F ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, a magnetic core-shell metal-organic framework (Fe3O4@PAA@UiO-66-NH2) nanocomposite was synthesized by a facile step-by-step self-assembly technique and used for selective adsorption of the anti-cancer Quercetin (QCT) drug. The synthesized nanocomposite was well characterized using FTIR, XRD, BET, FESEM, and TEM techniques. The adsorption kinetics and isotherms of the magnetic nanocomposites for QCT were investigated in detail at different initial concentrations and temperatures. It was found that the experimental adsorption kinetic and isotherm data were precisely explained by the pseudo-second-order kinetic and Langmuir isotherm models. Moreover, the selective... 

    Fe3O4@PAA@UiO-66-NH2 magnetic nanocomposite for selective adsorption of Quercetin

    , Article Chemosphere ; Volume 275 , 2021 ; 00456535 (ISSN) Ahmadijokani, F ; Tajahmadi, S ; Haris, M. H ; Bahi, A ; Rezakazemi, M ; Molavi, H ; Ko, F ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, a magnetic core-shell metal-organic framework (Fe3O4@PAA@UiO-66-NH2) nanocomposite was synthesized by a facile step-by-step self-assembly technique and used for selective adsorption of the anti-cancer Quercetin (QCT) drug. The synthesized nanocomposite was well characterized using FTIR, XRD, BET, FESEM, and TEM techniques. The adsorption kinetics and isotherms of the magnetic nanocomposites for QCT were investigated in detail at different initial concentrations and temperatures. It was found that the experimental adsorption kinetic and isotherm data were precisely explained by the pseudo-second-order kinetic and Langmuir isotherm models. Moreover, the selective...