Loading...
Search for: eigenvalues
0.012 seconds
Total 243 records

    The main eigenvalues of signed graphs

    , Article Linear Algebra and Its Applications ; Volume 614 , 2021 , Pages 270-280 ; 00243795 (ISSN) Akbari, S ; França, F. A. M ; Ghasemian, E ; Javarsineh, M ; de Lima, L. S ; Sharif University of Technology
    Elsevier Inc  2021
    Abstract
    A signed graph Gσ is an ordered pair (V(G),E(G)), where V(G) and E(G) are the set of vertices and edges of G, respectively, along with a map σ that signs every edge of G with +1 or −1. An eigenvalue of the associated adjacency matrix of Gσ, denoted by A(Gσ), is a main eigenvalue if the corresponding eigenspace has a non-orthogonal eigenvector to the all-one vector j. We conjectured that for every graph G≠K2,K4{e}, there is a switching σ such that all eigenvalues of Gσ are main. We show that this conjecture holds for every Cayley graphs, distance-regular graphs, vertex and edge-transitive graphs as well as double stars and paths. © 2020 Elsevier Inc  

    A methodology for analyzing the transient availability and survivability of a system with repairable components

    , Article Applied Mathematics and Computation ; Volume 184, Issue 2 , 2007 , Pages 300-307 ; 00963003 (ISSN) Amiri, M ; Ghassemi Tari, F ; Sharif University of Technology
    2007
    Abstract
    In this paper we present a method for transient analysis of availability and survivability of a system with the identical components and identical repairmen. The considered system is supposed to consist of series of k-out-of-n or parallel components. We employed the Markov models, eigen vectors and eigenvalues for analyzing the transient availability and survivability of the system. The method is implemented through an algorithm which is tested in MATLAB programming environment. The new method enjoys a stronger mathematical foundation and more flexibility for analyzing the transient availability and survivability of the system. © 2006 Elsevier Inc. All rights reserved  

    Intrinsic expressions for arbitrary stress tensors conjugate to general strain tensors

    , Article Scientia Iranica ; Volume 14, Issue 5 , 2007 , Pages 486-493 ; 10263098 (ISSN) Sohrabpour, S ; Naghdabadi, R ; Asghari, M ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    In this paper, a unified explicit tensorial relation is sought between two stress tensors conjugate to arbitrary and general Hill strains. The approach used for deriving the tensorial relation is based on the eigenprojection method. The result is, indeed, a generalization of the relations that were derived by Farahani and Naghadabadi [1] in 2003 from a component to intrinsic form. The result is unified in the sense that it is valid for all cases of distinct and coalescent principal stretches. Also, in the case of three dimensional Euclidean inner product space, using the derived unified relation, some expressions for the conjugate stress tensors are presented. © Sharif University of... 

    Unified basis-free relation between two stress tensors conjugate to arbitrary Hill's strain measures

    , Article ASME PVP2006/ICPVT-11 Conference, Vancouver, BC, 23 July 2006 through 27 July 2006 ; Volume 2006 , 2006 ; 0277027X (ISSN); 0791837823 (ISBN); 9780791837825 (ISBN) Asghari, M ; Naghdabadi, R ; Sharif University of Technology
    American Society of Mechanical Engineers(ASME)  2006
    Abstract
    The concept of energy conjugacy for stress and strain measures states that a stress tensor T is conjugate to a strain measure E if T: Ė provides the rate of change of the internal energy per unit reference volume of the body in an adiabatic process. The applications of the conjugate stress and strain measures are in the development of the basic relations in nonlinear analysis of solids. In this paper using eigenprojection method, unified explicit basis-free relation between two arbitrary stress tensors T(f) and T (g), respectively conjugate to two measures of Hill's strains is determined. The result is valid for arbitrary dimension of the Euclidean inner product space and for all cases of... 

    Spectra of strongly Deza graphs

    , Article Discrete Mathematics ; Volume 344, Issue 12 , 2021 ; 0012365X (ISSN) Akbari, S ; Haemers, W. H ; Hosseinzadeh, M. A ; Kabanov, V. V ; Konstantinova, E. V ; Shalaginov, L ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A Deza graph G with parameters (n,k,b,a) is a k-regular graph with n vertices such that any two distinct vertices have b or a common neighbours. The children GA and GB of a Deza graph G are defined on the vertex set of G such that every two distinct vertices are adjacent in GA or GB if and only if they have a or b common neighbours, respectively. A strongly Deza graph is a Deza graph with strongly regular children. In this paper we give a spectral characterisation of strongly Deza graphs, show relationships between eigenvalues, and study strongly Deza graphs which are distance-regular. © 2021 Elsevier B.V  

    Eigenvalue determination by mixed modular networks

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 28, Issue B1 , 2004 , Pages 31-41 ; 10286284 (ISSN) Joghataie, A ; Kamali, M. T ; Sharif University of Technology
    2004
    Abstract
    Smart systems in general, and specifically neural networks, are expected to be of great assistance in large scale matrix computation. However it was necessary to work with smaller problems at first step. To this end, a method based on using perceptrons and Kohonen networks for determining the first three modal frequencies of frames of up to 20 stories high and two bays wide from their stiffness and mass matrices, was developed. This paper introduces this modular network as a preferable alternative for designing smart systems for learning large scale mapping problems in structural engineering, and in addition, reports the successful application of this modular network to the eigenvalue and... 

    Linear analysis of the stability of particle-laden stratified shear layers

    , Article Canadian Journal of Physics ; Vol. 92, issue. 2 , 2014 , pp. 103-115 ; ISSN: 00084204 Khavasi, E ; Firoozabadi, B ; Afshin, H
    Abstract
    Hydrodynamic instabilities at the interface of stratified shear layers could occur in various modes and have an important role in the mixing process. In this work, the linear stability analysis in the temporal framework is used to study the stability characteristics of a particle-laden stratified two-layer flow for two different background density profiles: smooth (hyperbolic tangent) and piecewise linear. The effect of parameters, such as bed slope, viscosity, and particle size, on the stability is also considered. The pseudospectral collocation method employing Chebyshev polynomials is used to solve two coupled eigenvalue equations. Based on the results, there are some differences in the... 

    Inverse vibration problem for un-damped 3-dimensional multi-story shear building models

    , Article Journal of Sound and Vibration ; Volume 333, Issue 1 , 6 January , 2014 , Pages 99-113 ; ISSN: 0022460X Dolatshahi, K. M ; Rofooei, F. R ; Sharif University of Technology
    Abstract
    Various researchers have contributed to the identification of the mass and stiffness matrices of two dimensional (2-D) shear building structural models for a given set of vibratory frequencies. The suggested methods are based on the specific characteristics of the Jacobi matrices, i.e., symmetric, tri-diagonal and semi-positive definite matrices. However, in case of three dimensional (3-D) structural models, those methods are no longer applicable, since their stiffness matrices are not tri-diagonal. In this paper the inverse problem for a special class of vibratory structural systems, i.e., 3-D shear building models, is investigated. A practical algorithm is proposed for solving the inverse... 

    Re-interpreting simultaneous buckling modes of axially compressed isotropic conical shells

    , Article Thin-Walled Structures ; Vol. 84 , November , 2014 , pp. 360-368 ; ISSN: 02638231 Shakouri, M ; Spagnoli, A ; Kouchakzadeh, M. A ; Sharif University of Technology
    Abstract
    Elastic stability of shell structures under certain loading conditions is characterized by a dramatically unstable postbuckling behavior. The presence of simultaneous 'competing' buckling modes (corresponding to the same critical buckling load) is understood to be largely responsible for such behavior. In this paper, within the framework of linear bifurcation eigenvalue analysis and Donnell shallow shell theory, the presence of simultaneous buckling modes in axially compressed isotropic cones is determined using the semi-analytical method of Galerkin. The results are presented in the plane of the dimensionless reciprocal meridional and circumferential buckling half wavelengths, and are... 

    Bending-torsional flutter of a cantilevered pipe conveying fluid with an inclined terminal nozzle

    , Article Journal of Sound and Vibration ; Volume 332, Issue 12 , 2013 , Pages 3002-3014 ; 0022460X (ISSN) Firouz Abadi, R. D ; Askarian, A. R ; Kheiri, M ; Sharif University of Technology
    2013
    Abstract
    Stability analysis of a horizontal cantilevered pipe conveying fluid with an inclined terminal nozzle is considered in this paper. The pipe is modelled as a cantilevered Euler-Bernoulli beam, and the flow-induced inertia, Coriolis and centrifugal forces along the pipe as well as the follower force induced by the jet-flow are taken into account. The governing equations of the coupled bending-torsional vibrations of the pipe are obtained using extended Hamilton's principle and are then discretized via the Galerkin method. The resulting eigenvalue problem is then solved, and several cases are examined to determine the effect of nozzle inclination angle, nozzle aspect ratio, mass ratio and... 

    The impact of wind farms with doubly fed induction generators on power system electromechanical oscillations

    , Article Renewable Energy ; Volume 50 , 2013 , Pages 780-785 ; 09601481 (ISSN) Jafarian, M ; Ranjbar, A. M ; Sharif University of Technology
    2013
    Abstract
    Introduction of large amounts of new wind generation can affect the small signal stability of power systems with three mechanisms: displacing synchronous generators (SGs); reducing SGs power generation; and the dynamics of wind farms (WFs) interacting with the electromechanical mode of SGs. In this paper a novel approach is developed to investigate the impact of the latter mechanism on existing power systems oscillations. In this approach, the dynamic behavior of grid connected WFs is studied independent of the dynamic behavior of system SGs. This approach helps to identify the conditions in which the dynamics of WFs may interact with the electromechanical mode of SGs. Also it helps to... 

    New sufficient conditions for robust stability analysis of interval matrices

    , Article Systems and Control Letters ; Volume 61, Issue 12 , 2012 , Pages 1117-1123 ; 01676911 (ISSN) Firouzbahrami, M ; Babazadeh, M ; Karimi, H ; Nobakhti, A ; Sharif University of Technology
    2012
    Abstract
    This letter presents new sufficient conditions for robust Hurwitz stability of interval matrices. The proposed conditions are based on two approaches: (i) finding a common Lyapunov matrix for the interval family and (ii) converting the robust stability problem into a robust non-singularity problem using Kronecker operations. The main contribution of the letter is to derive accurate and computationally simple optimal estimates of the robustness margin and spectral bound of general interval matrices. The evaluation of the condition relies on the solutions of linear matrix inequalities (LMIs) and eigenvalue problems, both of which are solved very efficiently. The improvements gained by using... 

    Graetz problem extended to mixed electroosmotically and pressure-driven flow

    , Article Journal of Thermophysics and Heat Transfer ; Volume 26, Issue 1 , 2012 , Pages 123-133 ; 08878722 (ISSN) Sadeghi, A ; Veisi, H ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    2012
    Abstract
    Thermally developing mixed electroosmotically and pressure-driven flow in a parallel plate microchannel with a step change in wall temperature is considered in the framework of an extended Graetz problem. Both Joule heating and viscous dissipation effects are taken into consideration. Expressions for the dimensionless temperature and Nusselt number in the form of infinite series are presented. In general, the associated eigenvalue problem is solved numerically. Nevertheless, an analytical solution is also presented for axial locations close to the entrance. Comparisons are made between the present results and those obtained by approximating the electroosmotic velocity with the... 

    Transmit beampattern synthesis using eigenvalue decomposition in MIMO radar

    , Article ICICS 2011 - 8th International Conference on Information, Communications and Signal Processing, 13 December 2011 through 16 December 2011 ; December , 2011 , Page(s): 1 - 5 ; 9781457700309 (ISBN) Shadi, K ; Behnia, F ; Sharif University of Technology
    2011
    Abstract
    MIMO radar is the next generation radar which transmits arbitrary waveforms at each one of its apertures. It has been shown that design of waveforms for MIMO radars in order to synthesize a desired spatial beampattern is mapped into a waveform correlation matrix (R) design in the narrowband case. Searching for desired R has been modeled as a convex optimization problem which demands considerable processing power. There are also some close form solutions for special cases like rectangular beampatterns. Here we deal with the problem from a matrix eigenvalue theory perspective and show how close form solutions can be found for more general cases relaxing high computational power demand. Our... 

    On the existence of an analytic solution to the 1-D Ising model with nearest and next-nearest neighbor interactions in the presence of a magnetic field

    , Article Phase Transitions ; Volume 84, Issue 1 , Dec , 2011 , Pages 77-84 ; 01411594 (ISSN) Taherkhani, F ; Daryaei, E ; Abroshan, H ; Akbarzadeh, H ; Parsafar, G ; Fortunelli, A ; Sharif University of Technology
    2011
    Abstract
    To solve the controversy, regarding the existence of an analytic solution to the 1-D Ising model with nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions in the presence of a magnetic field, we apply the transfer matrix method to solve the 1-D Ising model in the presence of a magnetic field, taking both NN and NNN interactions into account. We show that it is possible to write a transfer matrix only if the number of sites is even. Even in such a case, it is impossible to diagonalize the transfer matrix in an analytic form. Therefore, we employ a numerical method to obtain the eigenvalues of the transfer matrix. Moreover, the heat capacity, magnetization, and magnetic... 

    Active control of robotic manipulators vibration via feedback control

    , Article 17th International Congress on Sound and Vibration 2010, ICSV 2010, 18 July 2010 through 22 July 2010 ; Volume 1 , 2010 , Pages 464-471 ; 9781617822551 (ISBN) Moradi, H ; Bakhtiari Nejad, F ; Sadighi, M ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper, a robotic manipulator modelled as a cantilever rotating Euler-Bernoulli beam is considered. Control objective is achieving a desired angular rotation of the manipulator tip while its lateral vibration is suppressed. An external driving torque is the control input of the system. Two dynamic transfer functions are derived to describe beam tip motion and angular rotation in terms of the desired angular rotation. After state-space representation of the problem, an observer is designed to estimate state variables of the system. Then, a feedback control is designed for both regulation and tracking objectives. Eigenvalues are chosen such that an appropriate response is achieved while... 

    Optical anisotropy of schwarzschild metric within equivalent medium framework

    , Article Optics Communications ; Volume 283, Issue 7 , April , 2010 , Pages 1222-1228 ; 00304018 (ISSN) Khorasani, S ; Rashidian, B ; Sharif University of Technology
    2010
    Abstract
    It is has been long known that the curved space in the presence of gravitation can be described as a non-homogeneous anisotropic medium in flat geometry with different constitutive equations. In this article, we show that the eigenpolarizations of such medium can be exactly solved, leading to a pseudo-isotropic description of curved vacuum with two refractive index eigenvalues having opposite signs, which correspond to forward and backward travel in time. We conclude that for a rotating universe, time-reversal symmetry is broken. We also demonstrate the applicability of this method to Schwarzschild metric and derive exact forms of refractive index. We derive the subtle optical anisotropy of... 

    Multiple antenna spectrum sensing in cognitive radios

    , Article IEEE Transactions on Wireless Communications ; Volume 9, Issue 2 , 2010 , Pages 814-823 ; 15361276 (ISSN) Taherpour, A ; Nasiri-Kenari, M ; Gazor, S ; Sharif University of Technology
    2010
    Abstract
    In this paper, we consider the problem of spectrum sensing by using multiple antenna in cognitive radios when the noise and the primary user signal are assumed as independent complex zero-mean Gaussian random signals. The optimal multiple antenna spectrum sensing detector needs to know the channel gains, noise variance, and primary user signal variance. In practice some or all of these parameters may be unknown, so we derive the Generalized Likelihood Ratio (GLR) detectors under these circumstances. The proposed GLR detector, in which all the parameters are unknown, is a blind and invariant detector with a low computational complexity. We also analytically compute the missed detection and... 

    Theoretical and experimental analysis of the free vibrations of a shell made of n cone segments joined together

    , Article Thin-Walled Structures ; Volume 108 , 2016 , Pages 416-427 ; 02638231 (ISSN) Sarkheil, S ; Saadat Foumani, M ; Navazi, H. M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    This paper investigates the free vibrations of a shell made of n cone segments joined together. The governing equations of the conical shell were obtained by applying the Sanders shell theory and the Hamilton principle. Then, these governing equations are solved by using the power series method and considering a displacement field which is harmonic function about the time and the circumferential coordinate. Using the boundary conditions of the two ends of the shell and the continuity conditions at the interface section of shell segments, and solving the eigenvalue problem, the natural frequencies and the mode shapes are obtained. Very good agreements exist between the analytical results of... 

    Bridged single-walled carbon nanotube-based atomic-scale mass sensors

    , Article Applied Physics A: Materials Science and Processing ; Volume 122, Issue 8 , Volume 122, Issue 8 , 2016 ; 09478396 (ISSN) Ali Akbari, H. R ; Shaat, M ; Abdelkefi, A ; Sharif University of Technology
    Springer Verlag 
    Abstract
    The potentials of carbon nanotubes (CNTs) as mechanical resonators for atomic-scale mass sensing are presented. To this aim, a nonlocal continuum-based model is proposed to study the dynamic behavior of bridged single-walled carbon nanotube-based mass nanosensors. The carbon nanotube (CNT) is considered as an elastic Euler–Bernoulli beam with von Kármán type geometric nonlinearity. Eringen’s nonlocal elastic field theory is utilized to model the interatomic long-range interactions within the structure of the CNT. This developed model accounts for the arbitrary position of the deposited atomic-mass. The natural frequencies and associated mode shapes are determined based on an eigenvalue...