Loading...
Search for: x-ray-diffraction-method
0.01 seconds

    Zn-Ni Electrophosphating on galvanized steel using cathodic and anodic electrochemical methods

    , Article Surface and Coatings Technology ; January , 2015 ; 02578972 (ISSN) Darband, G. B ; Afshar, A ; Aliabadi, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Electrophosphating is the novel method for accelerating the low temperature phosphating bath. This method can be performed as cathodic and anodic treatments. Both of them influence the coating deposition mechanism and therefore coating properties. In this study Zn-Ni electrophosphate coating was applied on galvanized steel using cathodic and anodic electrochemical methods. Microstructure, composition and corrosion resistance of coating were characterized by using a scanning electron microscopy, X-ray diffraction method and potentiodynamic polarization test respectively. The results of this study indicated that, by using cathodic method, compact phosphate coating with high corrosion... 

    Zn–Ni electrophosphating on galvanized steel using cathodic and anodic electrochemical methods

    , Article Surface and Coatings Technology ; Volume 306 , 2016 , Pages 497-505 ; 02578972 (ISSN) Barati Darband, Gh ; Afshar, A ; Aliabadi, A ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    Electrophosphating is the novel method for accelerating the low temperature phosphating bath. This method can be performed as cathodic and anodic treatments. Both of them influence the coating deposition mechanism and therefore coating properties. In this study Zn–Ni electrophosphate coating was applied on galvanized steel using cathodic and anodic electrochemical methods. Microstructure, composition and corrosion resistance of coating were characterized by using a scanning electron microscopy, X-ray diffraction method and potentiodynamic polarization test respectively. The results of this study indicated that, by using cathodic method, compact phosphate coating with high corrosion... 

    A study on microstructures and residual stress distributions in dissimilar friction-stir welding of AA5086-AA6061

    , Article Journal of Materials Science ; Volume 47, Issue 14 , 2012 , Pages 5428-5437 ; 00222461 (ISSN) Jamshidi Aval, H ; Serajzadeh, S ; Sakharova, N. A ; Kokabi, A. H ; Loureiro, A ; Sharif University of Technology
    2012
    Abstract
    Dissimilar friction stir welds of aluminum alloys AA5086 in annealed and AA6061 in T6 temper conditions were investigated in terms of residual stress, grain structure and precipitation distribution in different zones of the welded joints. Optical metallography and transmission electron microscopy were used to characterize microstructures of different zones of the welds. In addition, residual stress profile and local mechanical properties of different zones were evaluated employing X-ray diffraction method and digital image correlation technique. It was found that softening in the AA6061-T6 side occurs in regions with weld peak temperature higher than 300 °C. The micro-hardness profile... 

    Investigation on corrosion stratigraphy and morphology in some iron age bronze alloys vessels by OM, XRD and SEM–EDS methods

    , Article Applied Physics A: Materials Science and Processing ; Volume 122, Issue 4 , 2016 ; 09478396 (ISSN) Oudbashi, O ; Hasanpour, A ; Davami, P ; Sharif University of Technology
    Abstract
    The recently study of the corrosion in some bronze artefacts from the Sangtarashan Iron Age site, western Iran, was established to identify corrosion morphology and mechanism in these objects. The corrosion layers in 22 samples were studied by optical microscopy, scanning electron microscopy–energy-dispersive X-ray spectroscopy and X-ray diffraction methods. The results showed that a thin corrosion crust has formed on the surface of bronzes with a triple-layer structure, including two internal and one external corrosion layers. The formation of these layers is due to copper leaching from the bronze surface. The internal corrosion part has been a compact, tin-rich corrosion/oxidation product... 

    Cyclometalated platinum(II) complexes of 2,2′-bipyridine N-oxide containing a 1,1′-bis(diphenylphosphino)ferrocene ligand: structural, computational and electrochemical studies

    , Article Dalton Transactions ; Volume 46, Issue 6 , 2017 , Pages 2013-2022 ; 14779226 (ISSN) Shahsavari, H. R ; Fereidoonnezhad, M ; Niazi, M ; Mosavi, S. T ; Habib Kazemi, S ; Kia, R ; Shirkhan, S ; Abdollahi Aghdam, S ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    The preparation and characterization of new heteronuclear-platinum(ii) complexes containing a 1,1'-bis(diphenylphosphino)ferrocene (dppf) ligand are described. The reaction of the known starting complex [PtMe(κ2N,C-bipyO-H)(SMe2)], A, in which bipyO-H is a cyclometalated rollover 2,2'-bipyridine N-oxide, with the dppf ligand in a 2:1 ratio or an equimolar ratio led to the formation of the corresponding binuclear complex [Pt2Me2(κ2N,C-bipyO-H)2(μ-dppf)], 1, or the mononuclear complex [PtMe(κ1C-bipyO-H)(dppf)], 2, respectively. According to the reaction conditions, the dppf ligand in 1 and 2 behaves as either a bridging or chelating ligand. All complexes were characterized by NMR spectroscopy.... 

    Synthesis of Pd(II) large dinuclear macrocyclic complex tethered through two dipyridine-bridged aza-crowns as an efficient copper- and phosphine-free Sonogashira catalytic reaction

    , Article Journal of Organometallic Chemistry ; Volume 866 , 2018 , Pages 72-78 ; 0022328X (ISSN) Ghanbari, B ; Shahhoseini, L ; Hosseini, H ; Bagherzadeh, M ; Owczarzak, A ; Kubicki, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    For the first time the new 32-membered macrocyclic dinuclear palladium complex of two aza-crown macrocycles, bearing two pyridine arms, Pd2L2Cl4 was synthesized and characterized by elemental analysis, IR, NMR spectroscopy and single crystal X-ray diffraction methods. Pd2L2Cl4 was investigated as a moisture/air-stable catalyst for Sonogashira cross-coupling reaction in the absence of copper and phosphine ligand in DMSO. Thermal stability, possible occurrence of tandem reactions, promoted catalytic performance as well as synergistic effects are of advantageous features of Pd2L2Cl4. By employing Taguchi method, optimum conditions (110 °C, 6 h, KOAc, 2 mol% cat.) were determined. Moreover, the... 

    Effect of reinforcement volume fraction on the mechanical properties of Alg -SiC nanocomposites produced by mechanical alloying and consolidation

    , Article Journal of Composite Materials ; Volume 44, Issue 3 , 2010 , Pages 313-326 ; 00219983 (ISSN) Kamrani, S ; Riedel, R ; Seyed Reihani, S. M ; Kleebe, H. J ; Sharif University of Technology
    2010
    Abstract
    Alg -(1, 3, 5, 7, 10 vol%) SiC nanocomposites were produced by mechanical alloying (MA) and double pressing/sintering route. The characteristics of the milled powders and the consolidate specimens were examined using high resolution scanning electron microscopy and X-ray diffraction method. Compression and hardness tests were used to study the effect of SiC volume fraction on the strength of Alg -SiC nanocomposites. It was shown that with increasing the SiC volume fraction, finer particles with narrower size distribution and smaller crystallite size are obtained after MA. During sintering close to the melting point of aluminum, the presence of nanometer-scaled SiC particles was found to... 

    Magnetic hyperthermia behaviour of Co and reduced GO nanocomposites

    , Article Micro and Nano Letters ; Volume 15, Issue 4 , April , 2020 , Pages 239-244 Kakavand, A ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    Co-precipitation of CoCl2.6H2O with graphene oxide (GO) and heating at 400°C for 4 h under hydrogen resulted in the construction of cobalt/ reduced GO (Co/rGO) nanocomposite utilisable in magnetic thermal therapy. Field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, vibrating sample magnetometry, thermogravimetric analysis/derivative thermogravimetry, and X-ray diffraction methods characterised the samples. Time-temperature curves of the samples containing 30, 50, 70, and 100 µg ml−1 Co/rGO nanoparticles (NPs) suspended in phosphate-buffered saline were determined at different specific heating rates. Magnetic-field response of... 

    Novel fluoridated silk fibroin/ TiO2 nanocomposite scaffolds for bone tissue engineering

    , Article Materials Science and Engineering C ; Volume 82 , 2018 , Pages 265-276 ; 09284931 (ISSN) Johari, N ; Madaah Hosseini, H. R ; Samadikuchaksaraei, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    It is known that Fluoride ions strongly affect bone mineralization and formation. In the present study, the engineered bone tissue scaffolds are fabricated using silk fibroin (SF) and flouridated TiO2 nanoparticles. TiO2 nanoparticles are modified by fluoride ions, and different levels (0, 5, 10, 15 and 20 wt%) of the fluoridated TiO2 nanoparticles (TiO2-F) were subsequently added to the SF matrix through phase separation method to prepare silk fibroin/flouridated TiO2 nanocomposite scaffolds (SF/TiO2-F). Phase structure, functional groups, morphology and mechanical properties of the obtained scaffolds were evaluated by X-ray diffraction method (XRD), Fourier transform infrared spectroscopy...