Loading...
Search for: wistar-rat
0.008 seconds

    Endurance exercise training under normal diet conditions activates skeletal muscle protein synthesis and inhibits protein degradation signaling except MuRF1

    , Article Sport Sciences for Health ; Volume 18, Issue 3 , 2022 , Pages 1033-1041 ; 18247490 (ISSN) Gholipour, M ; Seifabadi, M ; Asad, M. R ; Sharif University of Technology
    Springer-Verlag Italia s.r.l  2022
    Abstract
    Purpose: Loss of skeletal muscle mass, which depends on a balance between protein synthesis and degradation, is common in sarcopenia, cachexia, and some diseases. The purpose of this study was to investigate the alterations and interactions of protein synthesis and degradation signaling components induced by 8-week endurance exercise training with a normal diet. Methods: Two exercise (n = 8) and control (n = 7) groups of Wistar rats were kept under standard conditions. The exercise group performed 8-week endurance running at 65–70% VO2max, 30–60 min, on a treadmill with 0° slope, and the rats of the control group were maintained under identical conditions except exercise training.... 

    Stimulus-specific adaptation decreases the coupling of spikes to LFP phase

    , Article Frontiers in Neural Circuits ; Volume 13 , 2019 ; 16625110 (ISSN) Parto Dezfouli, M ; Zarei, M ; Jahed, M ; Daliri, M. R ; Sharif University of Technology
    Frontiers Media S.A  2019
    Abstract
    Stimulus repetition suppresses the neural activity in different sensory areas of the brain. This mechanism of so-called stimulus-specific adaptation (SSA) has been observed in both spiking activity and local field potential (LFP) responses. However, much remains to be known about the effect of SSA on the spike–LFP relation. In this study, we approached this issue by investigating the spike-phase coupling (SPC) in control and adapting paradigms. For the control paradigm, pure tones were presented in a random unbiased sequence. In the adapting paradigm, the same stimuli were presented in a random pattern but it was biased to an adapter stimulus. In fact, the adapter occupied 80% of the... 

    The role of hippo signaling pathway in physiological cardiac hypertrophy

    , Article BioImpacts ; Volume 10, Issue 4 , 2020 , Pages 251-257 Gholipour, M ; Tabrizi, A ; Sharif University of Technology
    Tabriz University of Medical Sciences  2020
    Abstract
    Introduction: The role of Hippo signaling pathway, which was identified by genetic studies as a key regulator for tissue growth and organ size, in promoting physiological cardiac hypertrophy has not been investigated. Methods: Fourteen male Wistar rats were randomly assigned to the exercise and control groups. The exercise group ran 1 hour per day, 5 days/week, at about 65%-75% VO2max on the motor-driven treadmill with 15ºslope, and the control group ran 15 min/d, 2 days/ week at 9 m/min (0ºinclination), throughout the eight-week experimental period. Forty-eight hours after the last session, hearts were dissected and left ventricles were weighed and stored for subsequent RT-PCR analysis.... 

    Oral administration of lithium chloride ameliorate spinal cord injury-induced hyperalgesia in male rats

    , Article PharmaNutrition ; Volume 21 , 2022 ; 22134344 (ISSN) Rahimi, G ; Mirsadeghi, S ; Rahmani, S ; Izadi, A ; Ghodsi, Z ; Ghodsi, S. M ; Rahimi Movaghar, V ; Kiani, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Background: Numerous studies have described the neuroprotective effect of lithium in spinal cord injury in addition to its ameliorative impact on pain sensation. In the present study, we aim to examine the efficacy of 85 mg/kg as well as 50 mg/kg dosage of the lithium chloride (LiCl) through oral consumption in spinal cord injured rats and their effect on gene expression of three candidate genes, corresponding to the hyper-sensitization. Methods: Adult Wistar (male) rats were divided into four experimental groups: control; oral administration of LiCl with 85 mg/kg and 50 mg/kg dosage; and 10 % sucrose receiver as the vehicle. BBB and heat plantar tests were performed weekly throughout four... 

    Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres

    , Article International Journal of Pharmaceutics ; Volume 537, Issue 1-2 , 2018 , Pages 278-289 ; 03785173 (ISSN) Shamloo, A ; Sarmadi, M ; Aghababaie, Z ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Herein, a hybrid hydrogel/microsphere system is introduced for accelerated wound healing by sustained release of basic fibroblast growth factor (bFGF). The hydrogel is composed of a mixture of PVA, gelatin and chitosan. The double-emulsion-solvent-evaporation method was utilized to obtain microspheres composed of PCL, as the organic phase, and PVA, as the aqueous phase. Subsequently, various in-vitro and in-vivo assays were performed to characterize the system. BSA was used to optimize the release mechanism, and encapsulation efficiency in microspheres, where a combination of 3% (w/v) PCL and 1% (w/v) PVA was found to be the optimum microsphere sample. Incorporation of microspheres within... 

    A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation

    , Article International Journal of Pharmaceutics ; Volume 564 , 2019 , Pages 350-358 ; 03785173 (ISSN) Mohseni, M ; Shamloo, A ; Aghababaie, Z ; Afjoul, H ; Abdi, S ; Moravvej, H ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the current study, two series of antimicrobial dressings conjugated with silver sulfadiazine (SSD) and silver nanoparticles (AgNPs) were developed and evaluated for chronic wound healing. Highly porous polycaprolactone (PCL)/polyvinyl alcohol (PVA) nanofibers were loaded with different concentrations of SSD or AgNPs and compared comprehensively in vitro and in vivo. SSD and AgNPs indicated a strong and equal antimicrobial activity against S. aureus. However, SSD had more toxicity against fibroblast cells over one week in vitro culture. An in vivo model of wound healing on male Wistar rats was developed with a full thickness wound. All the wound dressings indicated enough flexibility and... 

    Rhythmic air-puff into nasal cavity modulates activity across multiple brain areas: A non-invasive brain stimulation method to reduce ventilator-induced memory impairment

    , Article Respiratory Physiology and Neurobiology ; Volume 287 , 2021 ; 15699048 (ISSN) Ghazvineh, S ; Salimi, M ; Nazari, M ; Garousi, M ; Tabasi, F ; Dehdar, K ; Salimi, A ; Jamaati, H ; Mirnajafi Zadeh, J ; Arabzadeh, E ; Raoufy, M. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Mechanical ventilation (MV) can result in long-term brain impairments that are resistant to treatment. The mechanisms underlying MV-induced brain function impairment remain unclear. Since nasal airflow modulates brain activity, here we evaluated whether reinstating airflow during MV could influence the memory performance of rats after recovery. Rats were allocated into two study groups: one group received rhythmic air-puff into the nasal cavity during MV and a control group that underwent ventilation without air-puff. During MV, air-puffs induced time-locked event potentials in OB, mPFC and vHPC and significantly increased the oscillatory activity at the air-puff frequency. Furthermore, in... 

    Simvastatin-loaded nano-niosomes confer cardioprotection against myocardial ischemia/reperfusion injury

    , Article Drug Delivery and Translational Research ; Volume 12, Issue 6 , 2022 , Pages 1423-1432 ; 2190393X (ISSN) Naseroleslami, M ; Mousavi Niri , N ; Akbarzade, I ; Sharifi, M ; Aboutaleb, N ; Sharif University of Technology
    Springer  2022
    Abstract
    Although simvastatin (SIM) has been proven to be a powerful agent against myocardial ischemia/reperfusion (MI/R) injury, poor water solubility, short half-life, and low bioavailability have made it futile while using conventional drug delivery system. Hence, this study aims to investigate therapeutic efficacy of SIM-loaded nano-niosomes on MI/R injury. Surface active agent film hydration method was used to synthesize nano-niosomes. The physicochemical properties of nano-niosomes were characterized using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Moreover, niosomes were characterized in entrapment efficiency (EE) and releasing pattern. Male Wistar rats were...