Loading...
Search for: wind-turbine-blades
0.006 seconds
Total 35 records

    Prediction of transition point on an oscillating airfoil using Neural network

    , Article 2007 5th Joint ASME/JSME Fluids Engineering Summer Conference, FEDSM 2007, San Diego, CA, 30 July 2007 through 2 August 2007 ; Volume 2 FORA, Issue PART A , July , 2007 , Pages 33-39 ; 0791842886 (ISBN); 9780791842881 (ISBN) Soltani, M. R ; Seddighi, M ; Masdari, M ; Sharif University of Technology
    2007
    Abstract
    Dynamic Neural network was used to minimize the amount of data required to predict the location of transition point on a 2-D oscillatory wing. For this purpose, various experimental tests were carried out on a section of a 660kw wind turbine blade. A multi layer non linear perceptrons network was trained using the output signals of four hot films attached on the upper surface of the model. Results show that using only 50% of the test data, the trained network was able to the transition point with an acceptable accuracy. Moreover, the method can predict the transition points at any position of the wing surface for different Reynolds numbers, amplitudes and initial angles of oscillation, and... 

    Effect of surface contamination on the performance of a section of a wind turbine blade

    , Article 45th AIAA Aerospace Sciences Meeting 2007, Reno, NV, 8 January 2007 through 11 January 2007 ; Volume 19 , 2007 , Pages 13026-13036 ; 1563478900 (ISBN); 9781563478901 (ISBN) Soltani, M. R ; Birjandi, A. H ; Sharif University of Technology
    2007
    Abstract
    A series of low speed wind tunnel tests on a section of a 660 Kw wind turbine blade which is under constructer were conducted to examine the effects of distributed surface contamination on its performance characteristics. At first model was tested in the clean condition and after that it was tested with tree different types of roughness. The data shows that this particular airfoil is very sensitive to the applied surface roughness. For the contaminated model the roughness, 0.5mm height was distributed over the entire upper surface of the airfoil such that the distribution pattern was denser in the vicinity of the leading edge and thinner in the trailing edge area. Statistical data show that... 

    Effects of reduced frequency on the performance of a wind turbine blade in the low and high turbulent unsteady flow

    , Article 25th AIAA Applied Aerodynamics Conference, 2007, Miami, FL, 25 June 2007 through 28 June 2007 ; Volume 2 , 2007 , Pages 877-882 ; 10485953 (ISSN); 1563478986 (ISBN); 9781563478987 (ISBN) Soltani, M. R ; Amiralaei, M. R ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2007
    Abstract
    An extensive experimental study is conducted to investigate the effects of reduced frequency on a harmonically pitching wing where its cross section is used in a 660 kW wind turbine under construction in Iran. The corresponding lift coefficient and real time pressure signatures at three sections of the model at various reduced frequencies are examined. The test covers a wide range of angles of attack at prestall, stall, and deep stall regions. Pressure distributions at tip, middle, and root sections of the wing were recorded and from these distributions the lift coefficients are computed. The results show great role of the reduced frequency in altering the maximum lift coefficients, lift... 

    Contamination effects on the performance of a wind turbine blade section

    , Article 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings, San Francisco, CA, 5 June 2006 through 8 June 2006 ; Volume 4 , 2006 , Pages 2801-2805 ; 1563478153 (ISBN); 9781563478154 (ISBN) Soltani, M. R ; Birjandi, A. H ; Sharif University of Technology
    2006
    Abstract
    A series of low speed wind tunnel tests on a section of a 660 Kw wind turbine blade were conducted to examine the effects of distributed surface contamination on its performance. The airfoil was a section of a wind turbine blade under construction. The performance of the section was measured in the following conditions: 1. Clean airfoil 2. Two types of zigzag roughness 3. Strip tape 4. Distributed contamination roughness Our preliminary data shows that the airfoil is very sensitive to the applied surface roughness. For the contamination model the roughness, 0.5mm height, is distributed over the entire upper surface of the airfoil. By putting the contamination roughness on the airfoil the... 

    The influence of free stream turbulence intensity on the unsteady behavior of a wind turbine blade section

    , Article 45th AIAA Aerospace Sciences Meeting 2007, Reno, NV, 8 January 2007 through 11 January 2007 ; Volume 11 , 2007 , Pages 7611-7618 ; 1563478900 (ISBN); 9781563478901 (ISBN) Seddighi, M ; Soltani, M. R ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2007
    Abstract
    Extensive wind tunnel tests have been conducted to investigate effects of turbulence intensity variations on the behavior of a section of a wind turbine blade in an oscillatory motion. Special emphasize was applied on the aerodynamic characteristics when oscillating the model in the vicinity of its static stall angle of attack and in the post stall condition. The model had 0.25m chord and was pitched about its quarter-chord. Data were acquired at various Reynolds number, and reduced frequency. Results show that turbulent intensity has strong effect on the unsteady load coefficients, hence aerodynamic performance of this model. Furthermore, free stream turbulence has different effect on the... 

    Impact of dielectric barrier discharge plasma on the wake of a wind turbine blade section oscillating in plunge

    , Article Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy ; Volume 236, Issue 2 , 2022 , Pages 320-335 ; 09576509 (ISSN) Maleki, G. H ; Davari, A. R ; Soltani, M. R ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Effects of dielectric barrier discharge plasma have been studied on the wake velocity profiles of a section of a 660 kW wind turbine blade in plunging motion in a wind tunnel. The corresponding unsteady velocity profiles show remarkable improvement when the plasma actuators were operating and the angles of attack of the model were beyond the static stall angles of the airfoil. As a result the drag force was considerably reduced. It is further observed that the plasma-induced flow attenuates the leading edge vortices that are periodically shed into wake and diminishes the large eddies downstream. The favorable effects of the plasma augmentation are shown to occur near the uppermost and... 

    Experimental investigation of the leadingedge roughness on the boundary layer of a plunging airfoil

    , Article 27th Congress of the International Council of the Aeronautical Sciences 2010, ICAS 2010, 19 September 2010 through 24 September 2010, Nice ; Volume 2 , 2010 , Pages 1582-1588 ; 9781617820496 (ISBN) Rasi Marzabadi, F ; Soltani, M. R ; Masdari, M ; Sharif University of Technology
    2010
    Abstract
    Extensive experimental investigation was conducted to study the effect of leading-edge roughness on the state of the boundary layer of a wind turbine blade section. The application of surface grit roughness simulates surface irregularities that occur on the wind turbine blades. The measurements were done using multiple hot-film sensors and surface pressure transducers in both static and plunging oscillation of the airfoil. Frequency domain analysis was used to determine the state of the unsteady boundary layer  

    Measurements of velocity field in the wake of an oscillating wind turbine blade

    , Article Aeronautical Journal ; Volume 114, Issue 1158 , August , 2010 , Pages 493-504 ; 00019240 (ISSN) Soltani, M. R ; Mahmoudi, M ; Sharif University of Technology
    2010
    Abstract
    A series of tests were carried out to study the unsteady wake behaviour behind an aerofoil which is a section of a wind-turbine blade. The model is oscillated in pitch about its quarter chord axis at various reduced frequencies, amplitudes, and mean angles-of-attack. Instantaneous and mean velocity profiles were obtained using total and static pressure at 35 vertically aligned points behind the aerofoil via two similar rakes. The rakes were located at a distance of 1.5 chord length behind the model. An estimation of the real time and average variations of the linear momentum deficit during the oscillation cycle is obtained and has been compared with the corresponding static data. The results... 

    Modal-based damage identification for the nonlinear model of modern wind turbine blade

    , Article Renewable Energy ; Volume 94 , 2016 , Pages 391-409 ; 09601481 (ISSN) Rezaei, M. M ; Behzad, M ; Moradi, H ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this paper, the modal-based indices are used in damage identification of the wind turbine blade. In contrast of many of previous researches, the geometric nonlinearity due to the large structural deformation of the modern wind turbines blade is considered. In the first step, the finite element model (FEM) of the rotating blade is solved to obtain the modal features of the deformed structure under operational aerodynamic loading. Next, the accuracy and efficiency of the various modal-based damage indices including the frequency, mode shape, curvature of mode shape, modal assurance, modal strain energy (MSE) and the difference of indices (between the intact and damaged blades) are... 

    Effect of amplitude and mean angle-of-attack on the boundary layer of an oscillating aerofoil

    , Article Aeronautical Journal ; Volume 112, Issue 1138 , 2008 , Pages 705-713 ; 00019240 (ISSN) Soltani, M. R ; Bakhshalipour, A ; Sharif University of Technology
    Royal Aeronautical Society  2008
    Abstract
    Extensive experiments were conducted to study the effect of various parameters on the surface pressure distribution and transition point of an aerofoil section used in a wind turbine blade. In this paper details of the variation of transition point on the aforementioned aerofoil are presented. The aerofoil spanned the wind-tunnel test section and was oscillated sinusoidally in pitch about the quarter chord. The imposed variables of the experiments were free stream velocity, amplitude of motion, mean angle-of-attack, and oscillation frequency. The spatial-temporal progressions of the leading-edge transition point and the state of the unsteady boundary-layer were measured using eight... 

    Surface contamination effects on the 2-D and unsteady wind turbine blade section performance

    , Article 25th AIAA Applied Aerodynamics Conference, 2007, Miami, FL, 25 June 2007 through 28 June 2007 ; Volume 2 , 2007 , Pages 795-801 ; 10485953 (ISSN) ; 1563478986 (ISBN); 9781563478987 (ISBN) Soltani, M. R ; Birjandi, A. H ; Goreishi, S. M ; Sharif University of Technology
    2007
    Abstract
    A series of unsteady low speed wind tunnel tests on a section of a 660 Kw wind turbine blade under construction were conducted to examine the effects of distributed surface contamination on its performance characteristics. Our data shows that the airfoil is very sensitive to the applied surface roughness. Results show that contamination decreases static maximum lift coefficient more than 40 percent. In the dynamic test this effect is the same and is about 38 percent. Contamination decreases the width of the dynamic diagrams loop such and leads to the smooth stall on the airfoil  

    Life prediction of wind turbine blades using multi-scale damage model

    , Article Journal of Reinforced Plastics and Composites ; Volume 40, Issue 17-18 , 2021 , Pages 644-653 ; 07316844 (ISSN) Aghajani, S ; Hemati, M ; Torabnia, S ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Wind turbine blade life prediction is the most important parameter to estimate the power generation cost. Due to the price and importance of wind blade, many experimental and theoretical methods were developed to estimate damages and blade life. A novel multiaxial fatigue damage model is suggested for the life prediction of a wind turbine blade. Fatigue reduction of fiber and interfiber characteristics are separately treated and simulated in this research. Damage behavior is considered in lamina level and then extended to laminate; hence, this model can be used for multidirectional laminated composites. The procedure of fatigue-induced degradation is implemented in an ABAQUS user material... 

    Life prediction of wind turbine blades using multi-scale damage model

    , Article Journal of Reinforced Plastics and Composites ; Volume 40, Issue 17-18 , 2021 , Pages 644-653 ; 07316844 (ISSN) Aghajani, S ; Hemati, M ; Torabnia, S ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Wind turbine blade life prediction is the most important parameter to estimate the power generation cost. Due to the price and importance of wind blade, many experimental and theoretical methods were developed to estimate damages and blade life. A novel multiaxial fatigue damage model is suggested for the life prediction of a wind turbine blade. Fatigue reduction of fiber and interfiber characteristics are separately treated and simulated in this research. Damage behavior is considered in lamina level and then extended to laminate; hence, this model can be used for multidirectional laminated composites. The procedure of fatigue-induced degradation is implemented in an ABAQUS user material... 

    Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes

    , Article Energy ; Volume 145 , 2018 , Pages 261-275 ; 03605442 (ISSN) Ebrahimi, A ; Sekandari, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, the aeroelastic analysis of a large scale wind turbine rotor is performed with the aim of studying transient performance of turbine in extreme wind conditions, such as wind gusts and rapid yaw changes. The effect of the presence and/or lack of blade pitch control system on output power, rotor thrust, and blade deformation in sudden change of wind speed are investigated. The NREL 5 MW offshore wind turbine is used as the baseline case. In this regard, the modal approach is implemented for modeling the flexible blade structure with tension, bending and torsion degrees of freedom. The unsteady vortex lattice method is employed to obtain the aerodynamic loads. Moreover, the... 

    Site specific optimization of wind turbines energy cost: Iterative approach

    , Article Energy Conversion and Management ; Volume 73 , September , 2013 , Pages 167-175 ; 01968904 (ISSN) Rezaei Mirghaed, M ; Roshandel, R ; Sharif University of Technology
    2013
    Abstract
    The present study was aimed at developing a model to optimize the sizing parameters and farm layout of wind turbines according to the wind resource and economic aspects. The proposed model, including aerodynamic, economic and optimization sub-models, is used to achieve minimum levelized cost of electricity. The blade element momentum theory is utilized for aerodynamic modeling of pitch-regulated horizontal axis wind turbines. Also, a comprehensive cost model including capital costs of all turbine components is considered. An iterative approach is used to develop the optimization model. The modeling results are presented for three potential regions in Iran: Khaf, Ahar and Manjil. The optimum... 

    Effect of surface contamination on the performance of a section of a wind turbine blade

    , Article Scientia Iranica ; Volume 18, Issue 3 B , 2011 , Pages 349-357 ; 10263098 (ISSN) Soltani, M. R ; Birjandi, A. H ; Seddighi Moorani, M ; Sharif University of Technology
    2011
    Abstract
    A series of low speed wind tunnel tests were conducted on a section of a 660 kW wind turbine blade to examine the effects of distributed surface contamination on its performance characteristics. The selected airfoil was tested with a clean surface, two types of zigzag roughness, strip tape roughness and distributed contamination roughness. The straight and zigzag leading edge roughness models simplify the contamination results in an early turbulence transition. In this study, surface contamination was simulated by applying 0.5 mm height roughness over the entire upper surface of the airfoil. The distribution density varied from the leading edge to the trailing edge of the model. Our data... 

    Development of a reduced order model for nonlinear analysis of the wind turbine blade dynamics

    , Article Renewable Energy ; Volume 76 , February , 2015 , Pages 264-282 ; 09601481 (ISSN) Rezaei, M. M ; Behzad, M ; Haddadpour, H ; Moradi, H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this paper, a reduced order model for the nonlinear dynamic analysis of the wind turbine blade under operational loading is presented. The accuracy and efficiency of the proposed model are investigated through various static and dynamic analyses. A comprehensive straightforward formulation for the nonlinear beam model is developed based on different large deformation strain theories. Also, the fluid-structure coupling effects due to quasi-steady aerodynamics and gravitational forces are included. The new matrix expressions are introduced for direct conversion of the developed formulation into the reduced order model (ROM). Thereafter, the ROM based on the Galerkin method is developed... 

    Fault detection of wind turbine blade under sudden change of wind speed condition using fiber optics

    , Article SAS 2015 - 2015 IEEE Sensors Applications Symposium, Proceedings, 13 April 2015 through 15 April 2015 ; April , 2015 ; 9781479961160 (ISBN) Zabihollah, A ; Entesari, F ; Alimohmmadi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    In this paper a structural health monitoring technique considering the effect of wind on structural stability on laminated composite wind turbine has been investigated. Based on fluid structure interaction method and Has hin failure criteria, condition monitoring of w ind turbine blades under sudden change of wind speed is investigated. The embedded fiber optic sensors are considered to detect the change in strain due to wind forces on the blades  

    A Pareto optimal multi-objective optimization for a horizontal axis wind turbine blade airfoil sections utilizing exergy analysis and neural networks

    , Article Journal of Wind Engineering and Industrial Aerodynamics ; Volume 136 , January , 2015 , Pages 62-72 ; 01676105 (ISSN) Mortazavi, S. M ; Soltani, M. R ; Motieyan, H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study a multi-objective genetic algorithm is utilized to obtain a Pareto optimal set of solutions for geometrical characteristics of airfoil sections for 10-meter blades of a horizontal axis wind turbine. The performance of the airfoil sections during the process of energy conversion is evaluated deploying a 2D incompressible unsteady CFD solver and the second law analysis. Artificial neural networks are trained employing CFD obtained data sets to represent objective functions in an algorithm which implements exergetic performance and integrity characteristics as optimization objectives. The results show that utilizing the second law approach along with Pareto optimality concept... 

    Vibration monitoring of wind turbine blade using fiber bragg grating

    , Article Wind Engineering ; Volume 34, Issue 6 , 2010 , Pages 721-731 ; 0309524X (ISSN) Fattahi, S. J ; Zabihollah, A ; Zareie, S ; Sharif University of Technology
    2010
    Abstract
    Rapid growth in generating power from wind turbines led to application of long laminated composite blades. However, as the length of blades increases, the risk of failure due to excessive vibration increases. Therefore, a reliable wind power generator requires an efficient and accurate, yet economical structural health monitoring system to detect vibration and apply a reliable control to prevent from unpredicted failure. This paper presents an optimal, low cost and continuous vibration monitoring system for laminated composite blades using Fiber Bragg Grating (FBG). Utilizing a layerwise displacement theory, the Finite Element (FEM) model has been developed for the wind turbine blade. The...