Loading...
Search for: white-matter
0.006 seconds

    Rotating field gradient (RFG) MR offers improved orientational sensitivity

    , Article Proceedings - International Symposium on Biomedical Imaging, 16 April 2015 through 19 April 2015 ; Volume 2015-July , 2015 , Pages 955-958 ; 19457928 (ISSN) ; 9781479923748 (ISBN) Ozarslan, E ; Memic, M ; Avram, A. V ; Afzali, M ; Basser, P. J ; Westin, C. F ; Sharif University of Technology
    IEEE Computer Society  2015
    Abstract
    Rotating field gradients (RFGs), generated by simultaneously applying sine- and cosine-modulated gradient waveforms along two perpendicular directions, provide an alternative diffusion sensitization mechanism for magnetic resonance imaging and spectroscopy. Two RFGs with a 90-degree phase shift between them are applied around the 180-degree RF pulse in a spin echo sequence to measure the diffusion orientation distribution function (dODF) directly. The technique obviates transforming the data from a space reciprocal to the displacement space. Here, we compare RFG results with those obtained by two pulsed field gradient (PFG) techniques: q-ball imaging (QBI) and its extension to constant solid... 

    Nonlinear mechanics of soft composites: hyperelastic characterization of white matter tissue components

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 19, Issue 3 , 2020 , Pages 1143-1153 Yousefsani, S. A ; Shamloo, A ; Farahmand, F ; Sharif University of Technology
    Springer  2020
    Abstract
    This paper presents a bi-directional closed-form analytical solution, in the framework of nonlinear soft composites mechanics, for top-down hyperelastic characterization of brain white matter tissue components, based on the directional homogenized responses of the tissue in the axial and transverse directions. The white matter is considered as a transversely isotropic neo-Hookean composite made of unidirectional distribution of axonal fibers within the extracellular matrix. First, two homogenization formulations are derived for the homogenized axial and transverse shear moduli of the tissue, based on definition of the strain energy density function. Next, the rule of mixtures and... 

    Effect of axonal fiber architecture on mechanical heterogeneity of the white matter—a statistical micromechanical model

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; 2021 ; 10255842 (ISSN) Hoursan, H ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    A diffusion tensor imaging (DTI) -based statistical micromechanical model was developed to study the effect of axonal fiber architecture on the inter- and intra-regional mechanical heterogeneity of the white matter. Three characteristic regions within the white matter, i.e., corpus callosum, brain stem, and corona radiata, were studied considering the previous observations of locations of diffuse axonal injury. The embedded element technique was used to create a fiber-reinforced model, where the fiber was characterized by a Holzapfel hyperelastic material model with variable dispersion of axonal orientations. A relationship between the fractional anisotropy and the dispersion parameter of... 

    A three-dimensional statistical volume element for histology informed micromechanical modeling of brain white matter

    , Article Annals of Biomedical Engineering ; Volume 48, Issue 4 , 2020 , Pages 1337-1353 Hoursan, H ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
    Springer  2020
    Abstract
    This study presents a novel statistical volume element (SVE) for micromechanical modeling of the white matter structures, with histology-informed randomized distribution of axonal tracts within the extracellular matrix. The model was constructed based on the probability distribution functions obtained from the results of diffusion tensor imaging as well as the histological observations of scanning electron micrograph, at two structures of white matter susceptible to traumatic brain injury, i.e. corpus callosum and corona radiata. A simplistic representative volume element (RVE) with symmetrical arrangement of fully alligned axonal fibers was also created as a reference for comparison. A... 

    Predicting the Brain Injury Effects on Physical Arrangement of White Matter Neuronal Tracts using a Finite Element Head Model based on Tractography

    , Ph.D. Dissertation Sharif University of Technology Yousefsani, Abdolmajid (Author) ; Farahmand, Farzam (Supervisor) ; Shamloo, Amir (Co-Supervisor) ; Oghabian, Mohammad Ali (Co-Supervisor)
    Abstract
    Diffuse tensor imaging or tractography is a useful method for tracking the axonal tracts pathways within the brain white matter by monitoring the movements of water molecules along the axons. The higher the level of the tissue anisotropy, the more accurate the pathways can be estimated. But in the swelling regions around an edematous tumor, the excess of watery fluid disrupts the directional movement of water molecules, and consequently, the diffuse tensor imaging is unable to track the pathways. This impairment should be resolved by predicting the axontal tracts arrangement in the blind regions of the images using the numerical modeling. To this end, a finite element model of the human... 

    Neural network-based brain tissue segmentation in MR images using extracted features from intraframe coding in H.264

    , Article Proceedings of SPIE - The International Society for Optical Engineering, 9 December 2011 through 10 December 2011, Singapore ; Volume 8349 , December , 2012 ; 0277786X (ISSN) ; 9780819490254 (ISBN) Jafari, M ; Kasaei, S ; Sharif University of Technology
    Abstract
    Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more... 

    Parallel nonlinear analysis of weighted brain's gray and white matter images for Alzheimer's dementia diagnosis

    , Article 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10, 31 August 2010 through 4 September 2010, Buenos Aires ; 2010 , Pages 5573-5576 ; 9781424441235 (ISBN) Razavian, S. M. J ; Torabi, M ; Kim, K ; Sharif University of Technology
    2010
    Abstract
    In this study, we are proposing a novel nonlinear classification approach to discriminate between Alzheimer's Disease (AD) and a control group using T1-weighted and T2- weighted Magnetic Resonance Images (MRI's) of brain. Since T1-weighted images and T2-weighted images have inherent physical differences, obviously each of them has its own particular medical data and hence, we extracted some specific features from each. Then the variations of the relevant eigenvalues of the extracted features were tracked to pick up the most informative ones. The final features were assigned to two parallel systems to be nonlinearly categorized. Considering the fact that AD defects the white and gray regions... 

    Effect of axonal fiber architecture on mechanical heterogeneity of the white matter—a statistical micromechanical model

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 25, Issue 1 , 2022 , Pages 27-39 ; 10255842 (ISSN) Hoursan, H ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    A diffusion tensor imaging (DTI) -based statistical micromechanical model was developed to study the effect of axonal fiber architecture on the inter- and intra-regional mechanical heterogeneity of the white matter. Three characteristic regions within the white matter, i.e., corpus callosum, brain stem, and corona radiata, were studied considering the previous observations of locations of diffuse axonal injury. The embedded element technique was used to create a fiber-reinforced model, where the fiber was characterized by a Holzapfel hyperelastic material model with variable dispersion of axonal orientations. A relationship between the fractional anisotropy and the dispersion parameter of... 

    Channelopathy-related SCN10A gene variants predict cerebellar dysfunction in multiple sclerosis

    , Article Neurology ; Volume 86, Issue 5 , 2016 , Pages 410-417 ; 00283878 (ISSN) Roostaei, T ; Sadaghiani, S ; Park, M. T. M ; Mashhadi, R ; Nazeri, A ; Noshad, S ; Salehi, M. J ; Naghibzadeh, M ; Moghadasi, A. N ; Owji, M ; Doosti, R ; Hashemi Taheri, A. P ; Rad, A. S ; Azimi, A ; Chakravarty, M. M ; Voineskos, A. N ; Nazeri, A ; Sahraian, M. A ; Sharif University of Technology
    Lippincott Williams and Wilkins 
    Abstract
    Objective: To determine the motor-behavioral and neural correlates of putative functional common variants in the sodium-channel NaV1.8 encoding gene (SCN10A) in vivo in patients with multiple sclerosis (MS). Methods: We recruited 161 patients with relapsing-onset MS and 94 demographically comparable healthy participants. All patients with MS underwent structural MRI and clinical examinations (Expanded Disability Status Scale [EDSS] and Multiple Sclerosis Functional Composite [MSFC]). Whole-brain voxel-wise and cerebellar volumetry were performed to assess differences in regional brain volumes between genotype groups. Resting-state fMRI was acquired from 62 patients with MS to evaluate... 

    A three-dimensional micromechanical model of brain white matter with histology-informed probabilistic distribution of axonal fibers

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 88 , 2018 , Pages 288-295 ; 17516161 (ISSN) Yousefsani, S. A ; Farahmand, F ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper presents a three-dimensional micromechanical model of brain white matter tissue as a transversely isotropic soft composite described by the generalized Ogden hyperelastic model. The embedded element technique, with corrected stiffness redundancy in large deformations, was used for the embedment of a histology-informed probabilistic distribution of the axonal fibers in the extracellular matrix. The model was linked to a multi-objective, multi-parametric optimization algorithm, using the response surface methodology, for characterization of material properties of the axonal fibers and extracellular matrix in an inverse finite element analysis. The optimum hyperelastic... 

    Interpolation of orientation distribution functions in diffusion weighted imaging using multi-tensor model

    , Article Journal of Neuroscience Methods ; Volume 253 , 2015 , Pages 28-37 ; 01650270 (ISSN) Afzali, M ; Fatemizadeh, E ; Soltanian Zadeh, H ; Sharif University of Technology
    Abstract
    Background: Diffusion weighted imaging (DWI) is a non-invasive method for investigating the brain white matter structure and can be used to evaluate fiber bundles. However, due to practical constraints, DWI data acquired in clinics are low resolution. New method: This paper proposes a method for interpolation of orientation distribution functions (ODFs). To this end, fuzzy clustering is applied to segment ODFs based on the principal diffusion directions (PDDs). Next, a cluster is modeled by a tensor so that an ODF is represented by a mixture of tensors. For interpolation, each tensor is rotated separately. Results: The method is applied on the synthetic and real DWI data of control and...