Loading...
Search for: wave-propagation
0.007 seconds
Total 199 records

    Guest editorial: Special issue on collective behavior of nonlinear dynamical networks

    , Article Scientia Iranica ; Volume 28, Issue 3 D , 2021 , Pages 1535-1538 ; 10263098 (ISSN) Jafari, S ; Perc, M ; Tavazoei, M. S ; Sharif University of Technology
    Sharif University of Technology  2021

    A ray tracing acceleration technique for wave propagation modeling

    , Article APMC 2009 - Asia Pacific Microwave Conference 2009, 7 December 2009 through 10 December 2009, Singapore ; 2009 , Pages 1100-1103 ; 9781424428021 (ISBN) Parsa, S ; Shishegar, A. A ; Sharif University of Technology
    IEEE  2009
    Abstract
    In this paper we deal with ray tracing acceleration problem in wave propagation simulation as a separate problem from its computer graphical counterpart and try to review accelerating techniques with this point of view. We build a classical kd-tree adapted to the special geometry of the problem. Then we mention the main differences between these two problems and devise algorithms that use these differences for accelerating intersection test in this problem even further  

    Far-field dynamic behavior of a half-space under an inertial strip foundation subjected to a time-harmonic force

    , Article Latin American Journal of Solids and Structures ; Volume 10, Issue 3 , 2013 , Pages 453-471 ; 16797817 (ISSN) Dehestani, M ; Malidarreh, N. R ; Choobbasti, A. J ; Vafai, A ; Sharif University of Technology
    2013
    Abstract
    Recent research works demonstrated that the interaction between the loads and the carrying structure's boundary which is related to the inertia of the load is an influential factor on the dynamic response of the structure. Although effects of the inertia in moving loads were considered in many works, very few papers can be found on the inertial effects of the stationary loads on structures. In this paper, an elastodynamic formulation was employed to investigate the dynamic response of a homogeneous isotropic elastic half-space under an inertial strip foundation subjected to a time-harmonic force. Fourier integral transformation was used to solve the system of Poisson-type partial... 

    Increasing the Accuracy of Vectorial Gaussian Beam Tracing in a Short Urban Link Using Hybrid Methods

    , M.Sc. Thesis Sharif University of Technology Alavi Rad, Mohammad (Author) ; Shishegar, Amir Ahmad (Supervisor)
    Abstract
    Recently, there has been a great interest toward site–specific modeling of outdoor radio wave propagation. Wave propagation in very large environments compared to a wavelength builds up an important category of electromagnetic wave propagation problems which occurs in
    versatile criteria from optical devices to long wireless microwave links. Well-known methods such as different ray tracing schemes used in these problems suffer from long execution time and great amount of needed memory. A new method has been proposed in this thesis to overcome such difficulties for high frequency wave propagation in large scale problems. The proposed method is based on tracing 3D vectorial Gaussian beam.... 

    Love waves propagation in functionally graded piezoelectric materials with quadratic variation

    , Article Journal of Sound and Vibration ; Volume 313, Issue 1-2 , 2008 , Pages 195-204 ; 0022460X (ISSN) Eskandari, M ; Shodja, H. M ; Sharif University of Technology
    2008
    Abstract
    The propagation behavior of Love waves in a semi-infinite functionally graded piezoelectric material (FGPM) with a quadratic variation is addressed. The coupled electromechanical field equations are solved, and the dispersion relations, displacement, electric potential, and stress fields are obtained analytically for both electrically open and short conditions. The effects of gradient coefficient on phase velocity, group velocity, and electromechanical coupling factor are plotted and discussed. It is shown that the phase velocity associated with the non-piezoelectric case coincides with that of the corresponding piezoelectric material under electrically open conditions. Because of gradual... 

    Wave propagation in a three-dimensional half-space with semi-infinite irregularities

    , Article Waves in Random and Complex Media ; 2021 ; 17455030 (ISSN) Daneshyar, A ; Sotoudeh, P ; Ghaemian, M ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Dynamic analysis of problems with complex geometries requires utilization of numerical methods. To completely capture the effects of seismic wave propagation in a system, one must consider the structure or irregularity within its encompassing half-space. Correct consideration of half-space in a numerical model is important specially when it comes to cases where the half-space contains semi-infinite irregularities. In this study, a generalized numerical methodology is presented for dynamic analysis of a half-space with semi-infinite irregularities. The methodology is first verified through comparison with analytical solution of known problems. Then the method is employed to solve the dynamic... 

    Inertial Effects of Moving Loads on the Dynamic Behavior of One and Two Dimensional Structures

    , Ph.D. Dissertation Sharif University of Technology Dehestani Kolagar, Mehdi (Author) ; Vafai, Abolhassan (Supervisor)
    Abstract
    In this study the dynamic responses of finite Euler-Bernoulli beams and homogeneous isotropic 2D half-spaces, as one and two dimensional structures, under a moving object are investigated. First, the dynamic responses of finite beams with various boundary conditions were investigated. The results illustrated that the speed of a moving mass has direct influence on the entire structural dynamic response, depending on its boundary conditions. Critical influential speeds in the moving mass problems were introduced and obtained in numerical examples for various BC’s. Dynamic response of a half-space under an inertial foundation subjected to a time-harmonic loading was investigated in the next... 

    Surface Waves Propagation in a Piezoelectric/Piezomagnetic Half Space Overlaid With a Finnite Layer

    , M.Sc. Thesis Sharif University of Technology Soltanian Fard, Mohammad Amin (Author) ; Skandari, Morteza (Supervisor)
    Abstract
    The propagation of the surface waves in the piezoelectric (PE) and piezomagnetic (PM) layered media are studied. The surface BG waves in the PE half-spaces overlaid by a layer are considered and the closed-form dispersion relations for the open and short electromechanical surface boundary conditions are obtained. The numerical results for the phase velocities and the electromechanical coupling factor for PZT-2 and PZT-8 media are presented. Furthermore, the propagation of the Rayleigh waves in the PE-PM layered media is considered. The effects of the imperfect bonding between the half-space and the layer are discussed. Later, we study the propagation of the Rayleigh waves in 4 different... 

    Three-dimensional scattering of plane harmonic SH, SV, and P waves in multilayered alluvial valleys

    , Article Asian Journal of Civil Engineering ; Volume 11, Issue 5 , 2010 , Pages 605-626 ; 15630854 (ISSN) Omidvar, B ; Rahimian, M ; Mohammadnejad, T ; Sanaeiha, A ; Sharif University of Technology
    2010
    Abstract
    In this paper, three-dimensional amplification of plane harmonic SH, SV, and P waves in multilayered alluvial valleys is investigated by using a boundary element method in frequency domain. It is shown that in order to achieve real responses, the problem must be analyzed and modeled three-dimensionally. Also, for exact evaluation of surface ground motions in alluvial valleys all key parameters such as layering, material and geometrical characteristics of each layer, stimulation frequency, wave type, plus angle and azimuth of incidence must be taken into account altogether. The accuracy and efficiency of the proposed formulations for the computation of the surface displacement field... 

    Asymmetric wave propagation in a transversely isotropic half-space in displacement potentials

    , Article International Journal of Engineering Science ; Volume 46, Issue 7 , 2008 , Pages 690-710 ; 00207225 (ISSN) Khojasteh, A ; Rahimian, M ; Eskandari, M ; Pak, R. Y. S ; Sharif University of Technology
    2008
    Abstract
    With the aid of a complete representation using two displacement potentials, an efficient and accurate analytical derivation of the fundamental Green's functions for a transversely isotropic elastic half-space subjected to an arbitrary, time-harmonic, finite, buried source is presented. The formulation includes a complete set of transformed stress-potential and displacement-potential relations that can be useful in a variety of elastodynamic as well as elastostatic problems. The present solutions are analytically in exact agreement with the existing solutions for a half-space with isotropic material properties. For the numerical evaluation of the inversion integrals, a quadrature scheme... 

    Reflection analysis of the end-facet dielectric slab waveguide by FDTD method

    , Article ICCEA 2004 - 2004 3rd International Conference on Computational Electromagnetics and its Applications, Beijing, 1 November 2004 through 4 November 2004 ; 2004 , Pages 453-456 ; 0780385624 (ISBN) Vahidpour, M ; Shishegar, A. A ; Sharif University of Technology
    2004
    Abstract
    The Finite Difference Time Domain (FDTD) method has been applied to the analysis of abruptly-ended dielectric waveguides. In these waveguides, incident propagating wave undergoes reflection in an interaction with the end-facet. As a result of the discontinuity, all possible propagating modes may be excited. The constituent propagating modes are extracted from the reflected wave by the least square method. Thus, we present a good estimation of the amplitudes of the reflected modes. This full wave analysis technique is also capable of analyzing any arbitrarily shaped facet. © 2004 IEEE  

    A new lateral load pattern for optimum design of concrete structures using the wave propagation theory

    , Article Structures ; Volume 40 , 2022 , Pages 581-595 ; 23520124 (ISSN) Khaaloo, A ; Omidi, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The current design procedure known as Force-Based Design (FBD) method, generally, does not lead to uniform distribution of drift, hysteretic energy, and ductility demands (or structural damage) along the height of the moment frames under strong earthquakes and these performance parameters can be much higher and concentrate damage on one or more of the lower structural stories. This paper presents an iterative wave propagation (WP) based technique to calculate the seismic nonlinear response of multistory buildings as an extension of the layered soil media, founded on bedrock and subjected to vertically propagating shear waves, which leads to the introduction of a new Lateral Load Pattern... 

    Theory of Nonlinear Lumped Element Transmission Lines

    , M.Sc. Thesis Sharif University of Technology Samizadeh Nikooytabalvandani, Mohammad (Author) ; Farzaneh, Forouhar (Supervisor) ; Hashemi, Morad Ali (Co-Advisor)
    Abstract
    With the rapid advances in microwave semiconductor devices and systems, the demand for implementation of nonlinear transmission lines (NLTLs) is rapidly increased. NLTLs support short pulses and wide band-widths. These networks provide cutoff frequencies over hundreds of GHz and picosecond rise times. Among all of the applications of NLTLs, the most attention has been paid to their application in the generation of high power RF pulses. In this application, a high power rectangular pulse is injected to the line, gradually evolved to an oscillatory pulse while propagating through the network, and finally, in the form of a high power RF pulse, is delivered to the load. NLTLs are the most... 

    Site-Specific Indoor Propagation Modeling Using Ray Tracing Method for 6g Wireless Communications

    , M.Sc. Thesis Sharif University of Technology Sheybani, Sina (Author) ; Shishegar, Amir Ahmad (Supervisor)
    Abstract
    This thesis explores the feasibility of implementing terahertz wireless communication in indoor environments (as suggested in 6G) by modeling the propagation of terahertz band waves. The roughness of indoor surfaces at the terahertz frequencies is investigated through the detailed examination of the electromagnetic fields scattered from these surfaces using the method of moments (MoM). To account for the random roughness of these surfaces, the Monte Carlo method is utilized, generating surfaces with Gaussian statistical distribution, and obtaining the scattered electromagnetic fields using MoM. The final results represent an average of all simulated scenarios. In addition, the study... 

    Indoor Radio-Wave Propagation Analysis using Physical Characteristics by Machine Learning Algorithms

    , M.Sc. Thesis Sharif University of Technology Eslami, Mounes (Author) ; Shishegar, Amir Ahmad (Supervisor)
    Abstract
    In recent years, the application of machine learning algorithms for predicting physical phenomena and achieving a balance between problem-solving speed and accuracy has gained prominence. The propagation of radio waves in indoor environments, due to various phenom- ena such as multipath signals, requires a significant amount of time for simulation. This thesis explores the phenomenon of indoor wave propagation using machine learning algorithms. By utilizing physical features, the error in the predicted received power map is reduced. These features include the presence of a line-of-sight ray, the number of obstacles between the transmitter and receiver, the distance between the transmitter... 

    Interference analysis in an urban mesh network operating in the 60-GHz band

    , Article ETRI Journal ; Volume 35, Issue 5 , 2013 , Pages 775-785 ; 12256463 (ISSN) Rasekh, M. E ; Farzaneh, F ; Sharif University of Technology
    2013
    Abstract
    Because of their exclusive features, millimeter wave directive mesh networks can be considered for small cell backhaul support in urban environments. For this purpose, a network of closely spaced stations has been considered with very directive line-of-sight links operating in the 60-GHz band. An attempt is made to evaluate channel response and interference behavior in such a network, taking into account the effect of building blockage. A simple grid of building blocks is considered as the propagation environment, and wave propagation is simulated using 2.5-dimensional (2.5D) ray tracing (2D with ground effect) to calculate the received signal at different nodes in the network. The results... 

    Experimental study of continuous h2/air rotating detonations

    , Article Combustion Science and Technology ; 2020 Dehghan Nezhad, S ; Fahim, M ; Farshchi, M ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    An experimental study of a lab scale rotating detonation combustor (RDC) has been conducted to identify and classify its modes of operation under different feeding conditions. The chamber uses air as oxidizer and hydrogen as fuel. The stability diagram of the RDC has been determined based on the detonation chamber Reynolds number and reactants mixture equivalence ratio values. The Reynolds number is based on the air volume flow rate, chamber annulus size, and the reactants mixture feeding slot area. Hence the effects of geometrical parameters and operational parameters on the detonation wave stability can be presented in a single stability map. This diagram identifies different zones in... 

    Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator

    , Article Mechanics Based Design of Structures and Machines ; Volume 49, Issue 5 , 2021 , Pages 640-658 ; 15397734 (ISSN) Habibi, M ; Mohammadi, A ; Safarpour, H ; Shavalipour, A ; Ghadiri, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    In this article, wave propagation characteristics of a size-dependent laminated composite nanostructure coupled with a piezoelectric actuator (PA) is investigated. In order to consider the effects of small scale, the governing equations of the laminated composite nanostructure coupled with PA are derived using Hamilton’s principle based on the nonlocal strain gradient theory (NSGT). The differential equations of motion are solved with the assistance of the analytical method. Afterward, a parametric study is carried out to investigate the effects of the PA thickness, wave number, angular velocity and the ply angle on the value of phase velocity. The results show that the ply angle plays an... 

    Seismic analysis of a system of dam-massed foundation-reservoir under inclined excitation

    , Article JVC/Journal of Vibration and Control ; Volume 28, Issue 13-14 , 2022 , Pages 1769-1780 ; 10775463 (ISSN) Sotoudeh, P ; Ghaemian, M ; Sharif University of Technology
    SAGE Publications Inc  2022
    Abstract
    One of the acceptable assumptions in engineering practice is vertical propagation of earthquake waves. When the source of earthquake is located very deep in the ground, this assumption is valid, but for sources located in shallow ground, it loses its viability. In this study, linear seismic analysis of a system of concrete dam-massed foundation-reservoir is performed under inclined earthquake excitation. Both P- and SV-type earthquakes are considered for the purpose of the seismic analysis. To consider the effects of inhomogeneous waves for the case of SV wave propagation, post-critical angles are also considered in the analysis. To investigate the effects of earthquake frequency content on... 

    Experimental study of continuous H2/Air rotating detonations

    , Article Combustion Science and Technology ; Volume 194, Issue 3 , 2022 , Pages 449-463 ; 00102202 (ISSN) Dehghan Nezhad, S ; Fahim, M ; Farshchi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    An experimental study of a lab scale rotating detonation combustor (RDC) has been conducted to identify and classify its modes of operation under different feeding conditions. The chamber uses air as oxidizer and hydrogen as fuel. The stability diagram of the RDC has been determined based on the detonation chamber Reynolds number and reactants mixture equivalence ratio values. The Reynolds number is based on the air volume flow rate, chamber annulus size, and the reactants mixture feeding slot area. Hence the effects of geometrical parameters and operational parameters on the detonation wave stability can be presented in a single stability map. This diagram identifies different zones in...