Loading...
Search for: volume-ratios
0.007 seconds

    Study and optimization of Amino Acid Extraction by emulsion Liquid Membrane

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Mohagheghe, E ; Vosoughi, M ; Alemzadeh, I ; Hexion Specialty Chemicals; Mitsubishi Chemical Corporation; CS Cabot; Zentiva; BorsodChem MCHZ ; Sharif University of Technology
    2006
    Abstract
    A batch extraction of an essential amino acid, Phenylalanine, from an aqueous solution of different concentrations by an Emulsion Liquid Membrane (ELM) was developed using D2EHPA as a cationic carrier, Span 80 as the surfactant, paraffin and kerosene as the diluents, and HCl as the internal electrolyte. All effective parameters such as pH of initial aqueous external phase, electrolyte concentration in aqueous internal phase, carrier and surfactant concentration in emulsion, volume ratio of the organic to aqueous internal phase (Roi), volume ratio of the W/O emulsion to aqueous external phase (Rew) and time were examined and optimized using Taguchi method which was the first time of... 

    The corrosion investigation of rebar embedded in the fibers reinforced concrete

    , Article Construction and Building Materials ; Volume 35 , October , 2012 , Pages 564-570 ; 09500618 (ISSN) Kakooei, S ; Akil, H. M ; Dolati, A ; Rouhi, J ; Sharif University of Technology
    Elsevier  2012
    Abstract
    One effective method for preventing corrosion of steel reinforcement and improving the mechanical properties of concrete is changing the physical nature of concrete by adding different materials. In this study, we have used polypropylene fibers as an additional material. We have compared the corrosion rate of rebar using different volume ratios and sizes of polypropylene fibers. Reinforcement potential increased as the amount of fibers increased from 0 to 2 kg m -3. The polypropylene fibers delay the initial corrosion process by preventing cracking, thereby decreasing permeability of the concrete. In addition, the corrosion rate of concrete samples made with Kish Island coral aggregate was... 

    Determination of the Optimal Conditions for Treatment of Lubricating Oils Wastewater in a Continuous Electrocoagulation Reactor

    , M.Sc. Thesis Sharif University of Technology Hosseini, Mehri (Author) ; Fotovat, Farzam (Supervisor)
    Abstract
    Electrocoagulation (EC) is an effective process in the treatment of oily wastewater, however, only a few studies have explored the parameters affecting the efficient design of the reactors employed in this process. In this study, a statistical investigation on the factors affecting the design of a continuous electrocoagulation reactor was performed by running the tests designed based on the design of experiments (DOE) principles. The explored design variables were current density (30-80 A/m2), reactor residence time (10-30 min), and the ratio of anode surface to the reactor volume (15-45 m2/m3), which were optimized by the response surface method (RSM) to maximize the amount of oil removal... 

    The effect of operating temperature on gasochromic properties of amorphous and polycrystalline pulsed laser deposited WO 3 films

    , Article Sensors and Actuators, B: Chemical ; Volume 169 , July , 2012 , Pages 284-290 ; 09254005 (ISSN) Garavand, N. T ; Mahdavi, S. M ; Zad, A. I ; Ranjbar, M ; Sharif University of Technology
    2012
    Abstract
    In this study, tungsten oxide films were synthesized by pulsed laser deposition (PLD) method. The as-deposited films were annealed at a temperature of 250 and 350°C in air for 1 h. The surface morphology, microstructure, crystalline phase and chemical composition of the as-prepared and annealed films were characterized by SEM, XRD and XPS techniques, respectively. Deposition of Pd nanoparticles onto the tungsten oxide surface was performed by hydrogen reduction of a drop-drying PdCl 2 solution onto a WO 3 surface at 60°C. The influence of the annealing temperature on microstructure and gasochromic performance as well as the effect of operating temperature is presented in this work. Results... 

    Tailoring of morphology and crystal structure of CdSe nanostructures by controlling the ratio of triethylenetetraamine and water in their mixed solution

    , Article Applied Physics A: Materials Science and Processing ; Volume 107, Issue 2 , May , 2012 , Pages 497-502 ; 09478396 (ISSN) Mohammadi, M. R ; Zarghami, V ; Fray, D. J ; Sharif University of Technology
    2012
    Abstract
    The morphological manipulation, structural characterization, and optical properties of different CdSe nanocrystals were reported. Several different CdSe nanostructures, including nanowires, tetrapod crystals, and nanoparticles were grown by varying the volume ratio of triethylenetetraamine (TETA) and water (WA) in their mixed solution. By manipulating the growth driving force (i.e., the degree of supersaturation) and kinetics of the process (i.e., growth rate), the morphology and crystal structure of CdSe nanocrystals can be tailored. Growth driving force changed their morphology from nanowires to tetrapod structures and from the latter structure to nanoparticles. Moreover, kinetics of the... 

    Surface/interface effect on the scattered fields of an anti-plane shear wave in an infinite medium by a concentric multi-coated nanofiber/nanotube

    , Article European Journal of Mechanics, A/Solids ; Volume 32 , 2012 , Pages 21-31 ; 09977538 (ISSN) Shodja, H. M ; Pahlevani, L ; Sharif University of Technology
    Abstract
    In this paper, the scattering of anti-plane shear waves in an infinite matrix containing a multi-coated nanofiber/nanotube is studied. Based on the fact that the surface to volume ratio for nano-size objects increases, the usual classical theories which generally neglect the surface/interface effects fail to provide reasonable results. Therefore, to analyze the problem the wave-function expansion method is coupled with the surface/interface elasticity theory. In order to provide some quantitative results through consideration of several examples, the knowledge of the relevant surface and/or interface properties of the corresponding constituent materials are required. For this reason, part of... 

    A combined first principles and analytical treatment for determination of the surface elastic constants: Application to Si(001) ideal and reconstructed surfaces

    , Article Philosophical Magazine Letters ; Volume 92, Issue 1 , Sep , 2012 , Pages 7-19 ; 09500839 (ISSN) Ojaghnezhad, F ; Shodja, H. M ; Sharif University of Technology
    2012
    Abstract
    Behavior of nanostructures, which are characterized by a large surface-to-volume ratio, is greatly influenced by their surface parameters, such as surface elastic moduli tensor. Accurate determination of the surface elastic constants by first principles is of particular interest. To this end, through consideration of the fundamental thermodynamic arguments for free solid surfaces, an analytical formulation for the change in specific Helmholtz surface free energy is developed. Relating this formulation to the corresponding energy calculated via first principles leads to the determination of the surface elastic moduli tensor. The surface mechanical properties, namely surface energy, surface... 

    Correlations for prediction of specific surface area and bulk and apparent densities of porous styrene-divinylbenzene copolymers

    , Article Journal of Applied Polymer Science ; Volume 120, Issue 4 , 2011 , Pages 1942-1949 ; 00218995 (ISSN) Nodehi, A ; Hajiebrahimi, M ; Parvazinia, M ; Shahrokhi, M ; Abedini, H ; Sharif University of Technology
    Abstract
    Macroporous styrene-divinylbenzene copolymers with different degree of crosslinking were prepared by suspension polymerization in presence of different binary mixtures of toluene and heptane, as diluent. Specific surface area, bulk and apparent densities, and pore volume of the resulting beads were determined experimentally. Applying the least square method to the experimental data, correlations for prediction of these properties were obtained. Effects of divinylbenzene concentration, diluent to comonomer volume ratio, and composition of the diluent mixture were considered in developing the aforementioned correlations. The influence of the reaction recipe on porous structure of the samples... 

    Modeling and optimization of asphaltene deposition in porous media using genetic algorithm technique

    , Article Society of Petroleum Engineers - International Oil and Gas Conference and Exhibition in China 2010, IOGCEC, 8 June 2010 through 10 June 2010 ; Volume 1 , June , 2010 , Pages 479-491 ; 9781617388866 (ISBN) Hematfar, V ; Kharrat, R ; Ghazanfari, M. H ; Bagheri, M. B ; Sharif University of Technology
    2010
    Abstract
    Different models have been proposed for deposition of asphaltene on reservoir rocks that due to complexity of asphaltene nature, most of them have not been productive. Here, a reliable model is proposed which despite of previous models, considers the change in asphaltene saturation in the core. The obtained experimental data in the laboratory was used for model validation. In this work, a series of core flooding tests was carried out in presence of connate water at different solvent-oil volume ratios. Pressure drop was measured at three different terminals along the core. The obtained experimental data as well as mass balance equations, momentum equation, asphaltene deposition and... 

    Simulation of austenite decomposition in continuous cooling conditions: a cellular automata-finite element modelling

    , Article Ironmaking and Steelmaking ; 2017 , Pages 1-9 ; 03019233 (ISSN) Monshat, H ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    Transformation of austenite to ferrite under continuous cooling condition was investigated. The heat conduction problem was managed by finite element method while two-dimensional cellular automata modeling was simultaneously performed to predict the progress of austenite decomposition using a two-step algorithm to reduce surface-to-volume ratio. Continuous cooling experiments on low carbon steel were made and the ferrite structure was determined and compared with the simulation data. The predicted and the experimental results demonstrated an acceptable consistency and the activation energy for ferrite growth was determined as 171 kJ/mole. The rate of ferrite transformation increased under... 

    Scattering of SH-waves by a nano-fiber beneath the interface of two bonded half-spaces within surface/interface elasticity via multipole expansion

    , Article International Journal of Solids and Structures ; Volume 130-131 , 2018 , Pages 258-279 ; 00207683 (ISSN) Ghafarollahi, A ; Shodja, H. M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The present work aims to study the anti-plane scattering of SH-waves by an elastic micro-/nano-fiber which is embedded near the interface between exponentially graded and homogeneous half-spaces incorporating interface effects. The fiber is perfectly bonded to the inhomogeneous medium. It is well-known that traditional elasticity theory is incapable of accounting accurately for the nanoscopic-interfaces and, likewise, inappropriate for the prediction of the behavior of nano-sized structures where the surface-to-volume ratio is remarkably large. In the present study, the interface effects are incorporated using the well-known (Gurtin and Murdoch, 1975) surface elasticity theory which permits... 

    Nanoparticle catalysts

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 23 , 2009 ; 00223727 (ISSN) Zaker Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    In this review, the importance of nanoparticles (NPs), with emphasis on their general and specific properties, especially the high surface-to-volume ratio (A/V), in many technological and industrial applications is studied. Some physical and chemical preparation methods for growing several metallic and binary alloy NP catalysts are reviewed. The growth and mechanism of catalytic reactions for synthesis of 1D nanostructures such as ZnO nanowires and multiwall carbon nanotubes (MWCNTs) are discussed. Gas-phase production with emphasis on dependence of catalytic activity and selectivity on size, shape and structure of NPs is also investigated. Application of NP catalysts in several... 

    Moisture diffusivity and shrinkage of broad beans during bulk drying in an inert medium fluidized bed dryer assisted by dielectric heating

    , Article Journal of Food Engineering ; Volume 92, Issue 3 , 2009 , Pages 331-338 ; 02608774 (ISSN) Hashemi, G ; Mowla, D ; Kazemeini, M ; Sharif University of Technology
    2009
    Abstract
    Drying behavior of broad beans (Vicia faba) was studied in a pilot scaled fluidized bed dryer with inert particles assisted by dielectric heating. The effective diffusion coefficient of moisture transfer was determined by Fickian method at four different air drying temperatures of 35, 45, 55 and 65 °C. Correlations for moisture diffusivity as a function of moisture content and temperature of the drying medium were developed. The values of moisture diffusivity were obtained within the range of 1.27 × 10-9-6.48 × 10-9 m2/s and the activation energies for FBD and FBD + DE were found to be 27.71 and 17.10 kJ/mol, respectively. The shrinkage behavior of the broad beans was also investigated by... 

    A Rapid synthesis of vertically aligned taper-like k-doped zno nanostructures to enhance dye-sensitized solar cell efficiency

    , Article JOM ; Volume 71, Issue 12 , 2019 , Pages 4850-4856 ; 10474838 (ISSN) Sharifi Miavaghi, A ; Musavi, M ; Nanchian, H ; Pezeshkzadeh, S. A ; Sharif University of Technology
    Springer  2019
    Abstract
    Large-scale K-doped ZnO nanotapers were successfully grown on an indium tin oxide (ITO) substrate using a facile electrochemical route. The structural and morphologic analysis exhibited that the K-doped ZnO nanostructures had a nanotaper morphology and strong preferential [0001] c-axis direction with a hexagonal polycrystalline structure. The optical results show that the incorporation of K+ ions as the donors in a ZnO lattice leads to substantial modulation of the band gap structure of ZnO nanotapers, which results in a redshift in the ultraviolet emission peaks. The considerable enhancement of performance in K-doped ZnO-based dye-sensitized solar cells (DSSCs) can be related to the doping... 

    Simulation of austenite decomposition in continuous cooling conditions: a cellular automata-finite element modelling

    , Article Ironmaking and Steelmaking ; Volume 46, Issue 6 , 2019 , Pages 513-521 ; 03019233 (ISSN) Monshat, H ; Serajzadeh, S ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Transformation of austenite to ferrite under continuous cooling condition was investigated. The heat conduction problem was managed by finite element method while two-dimensional cellular automata modeling was simultaneously performed to predict the progress of austenite decomposition using a two-step algorithm to reduce surface-to-volume ratio. Continuous cooling experiments on low carbon steel were made and the ferrite structure was determined and compared with the simulation data. The predicted and the experimental results demonstrated an acceptable consistency and the activation energy for ferrite growth was determined as 171 kJ/mole. The rate of ferrite transformation increased under... 

    Calculation of the additional constants for fcc materials in second strain gradient elasticity: Behavior of a nano-size bernoulli-euler beam with surface effects

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 79, Issue 2 , 2012 ; 00218936 (ISSN) Shodja, H. M ; Ahmadpoor, F ; Tehranchi, A ; Sharif University of Technology
    2012
    Abstract
    In addition to enhancement of the results near the point of application of a concentrated load in the vicinity of nano-size defects, capturing surface effects in small structures, in the framework of second strain gradient elasticity is of particular interest. In this framework, sixteen additional material constants are revealed, incorporating the role of atomic structures of the elastic solid. In this work, the analytical formulations of these constants corresponding to fee metals are given in terms of the parameters of Sutton-Chen interatomic potential function. The constants for ten fcc metals are computed and tabulized. Moreover, the exact closed-form solution of the bending of a... 

    Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor

    , Article Chemical Engineering Journal ; Volume 146, Issue 1 , 2009 , Pages 79-85 ; 13858947 (ISSN) Faramarzpour, M ; Vossoughi, M ; Borghei, M ; Sharif University of Technology
    2009
    Abstract
    In this research, an attempt was made to investigate the potential of nanophotocatalysts for treatment of hazardous wastewater streams. Titanium dioxide nanoparticles (as photocatalyst) were immobilized on a porous and low-density support called "perlite" using a very simple and inexpensive method. TiO2-coated perlite granules were used in a "Floating-bed photoreactor" to study the photocatalytic purification process of a typical wastewater polluted by furfural. The effects of initial concentration, catalyst mass/solution volume ratio, oxidant molar flow, residence time, and light intensity on process removal efficiency, and kinetics of the reactions were studied. SEM analyses showed a... 

    Thermodynamic modeling for hydrogen production from biomass and evaluation of biomass energy technologies

    , Article Biotechniques for Air Pollution Control - Proceedings of the 3rd International Congress on Biotechniques for Air Pollution Control, 28 September 2009 through 30 September 2009, Delft ; 2010 , Pages 269-273 ; 9780415582704 (ISBN) Hemmati, Sh ; Saboohi, Y ; Hashemi, N ; Vossoughi, M ; Pazuki, G. R ; Sharif University of Technology
    2010
    Abstract
    Compared with fossil fuel, biomass is a clean energy with zero CO 2 emission, because CO 2 is fixed by photosynthesis during biomass growth and released again during utilization. Due to its low energy density, direct use of biomass is not convenient. Thus, it is necessary to convert biomass to fuel gas, such as hydrogen, which can be used cleanly and highly efficiently in fuel cell. Thermo-chemical gasification is likely to be the most cost-effective conversion process and it is promising technology for renewable hydrogen production by utilizing biomass. Biomass gasification produces a mixture of gases (mainly consisting of H 2, CO, CO 2, CH 4 and higher hydrocarbons), solids (char) and... 

    Kinetics of platinum extraction from spent reforming catalysts in aqua-regia solutions

    , Article Hydrometallurgy ; Volume 95, Issue 3-4 , 2009 , Pages 247-253 ; 0304386X (ISSN) Baghalha, M ; Khosravian Gh., H ; Mortaheb, H. R ; Sharif University of Technology
    2009
    Abstract
    Platinum content of two commercial spent reforming catalysts were extracted in aqua-regia solutions under atmospheric pressure and at temperatures up to 100 °C. Three factors, including presence of coke, catalyst particle size, and impeller agitation speed were first tested to study the relative importance of mass-transfer resistances during Pt extraction reaction. Catalyst particle sizes < 100 μm and agitation speeds > 700 rpm eliminated the internal and external mass-transfer resistances, respectively. The effect of other factors, including HNO3-to-HCl volume ratio, liquid-to-solid mass ratio, and the reaction temperature on the extraction rate of platinum were then examined. Pt extraction...