Loading...
Search for: volume-fraction
0.009 seconds
Total 142 records

    Evaluation of Quality Iindex of A-356 aluminum alloy by microstructural analysis

    , Article Scientia Iranica ; Volume 11, Issue 4 , 2004 , Pages 386-391 ; 10263098 (ISSN) Khomamizadeh, F ; Ghasemi, A ; Sharif University of Technology
    Sharif University of Technology  2004
    Abstract
    In this paper, the effect of morphology, size and volume fraction of the most important microstructural constituents of cast A356 aluminum alloy on its main mechanical properties has been studied. The investigated variables consist of Dendrite Arm Spacing (DAS) of α aluminum phases, spheroicity of silicon particles in eutectic areas and 2-D micro porosity areas. The variations of Quality Index (Qi) with DAS and spheroicity of eutectic silicon particles follow a linear relationship. For the micro-porosity area of a polished section of the studied samples, two linear relationships were found, one for values less than 1.25% and another for higher values. As the basis for a quantitative analysis... 

    Experiments and CFD simulation of ferrous biooxidation in a bubble column bioreactor

    , Article Computers and Chemical Engineering ; Volume 32, Issue 8 , 22 August , 2008 , Pages 1681-1688 ; 00981354 (ISSN) Mousavi, S. M ; Jafari, A ; Yaghmaei, S ; Vossoughi, M ; Turunen, I ; Sharif University of Technology
    2008
    Abstract
    In the present attempt a set of experiments and a 3D simulation using a commercially available computational fluid dynamics package (FLUENT) were adopted to investigate complex behavior involving hydrodynamics and ferrous biological oxidation in a gas-liquid bubble column reactor. By combining the hydrodynamics and chemical species transport equations, the velocity field, air volume fraction and ferrous biooxidation rate in the column were simulated. The kinetic model proposed by Nemati and Webb [Nemati, M., & Webb, C. (1997). A kinetic model for biological oxidation of ferrous iron by Thiobacillus ferrooxidans. Biotechnology and Bioengineering, 53, 478-486] was used to simulate the... 

    Effective moduli and characteristic lengths of micropolar media with dense periodic distribution of ellipsoidal nano-/micro-inhomogeneities

    , Article European Journal of Mechanics, A/Solids ; Volume 85 , 2021 ; 09977538 (ISSN) Alemi, B ; Shodja, H. M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Nanoscopic elastic behavior of the field quantities in the vicinities of nanosize defects and nano-inhomogeneities cannot be properly described within the size independent classical theory. As a remedy to this type of dilemmas and enhancement of the accuracy of the solution, polar or gradient continuum theories may be utilized. The current work is concerned with composites consisting of micropolar matrix and micropolar ellipsoidal particles with periodic distribution throughout the three dimensional space. In particular, the analytical determinations of the effective micropolar elastic moduli tensor, effective micropolar couple stress moduli tensor, and effective micropolar characteristic... 

    Effective moduli and characteristic lengths of micropolar media with dense periodic distribution of ellipsoidal nano-/micro-inhomogeneities

    , Article European Journal of Mechanics, A/Solids ; Volume 85 , 2021 ; 09977538 (ISSN) Alemi, B ; Shodja, H. M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Nanoscopic elastic behavior of the field quantities in the vicinities of nanosize defects and nano-inhomogeneities cannot be properly described within the size independent classical theory. As a remedy to this type of dilemmas and enhancement of the accuracy of the solution, polar or gradient continuum theories may be utilized. The current work is concerned with composites consisting of micropolar matrix and micropolar ellipsoidal particles with periodic distribution throughout the three dimensional space. In particular, the analytical determinations of the effective micropolar elastic moduli tensor, effective micropolar couple stress moduli tensor, and effective micropolar characteristic... 

    Two-phase acto-cytosolic fluid flow in a moving keratocyte: a 2d continuum model

    , Article Bulletin of Mathematical Biology ; Volume 77, Issue 9 , September , 2015 , Pages 1813-1832 ; 00928240 (ISSN) Nikmaneshi, M. R ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as... 

    Effects of asphaltene content and temperature on viscosity of Iranian heavy crude oil: Experimental and modeling study

    , Article Energy and Fuels ; Volume 27, Issue 12 , 2013 , Pages 7217-7232 ; ISSN: 08870624 Ghanavati, M ; Shojaei, M. J ; Ahmad Ramazani, S. A ; Sharif University of Technology
    2013
    Abstract
    Heavy and extra heavy crude oils usually have a high weight percentage of asphaltene, which could induce many problems during production to refining processes. Also, asphaltene has the main role on the high viscosity of the heavy and extra heavy crude oils. In this paper, the effects of asphaltene characteristics on the crude oil rheological properties have been experimentally and theoretically investigated using different classes of the suspension models. For experimental investigation, the asphaltene was first precipitated from the original heavy crude oil and then 10 well-defined reconstituted heavy oil samples are made by dispersing the asphaltene into the maltene (i.e., deasphalted... 

    Influence of martensite volume fraction on impact properties of triple phase (TP) steels

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 3 , 2013 , Pages 823-829 ; 10599495 (ISSN) Zare, A ; Ekrami, A ; Sharif University of Technology
    2013
    Abstract
    Ferrite-bainite-martensite triple phase (TP) microstructures with different volume fractions of martensite were obtained by changing heat treatment time during austempering at 300 C. Room temperature impact properties of TP steels with different martensite volume fractions (VM) were determined by means of Charpy impact testing. The effects of test temperature on impact properties were also investigated for two selected microstructures containing 0 (the DP steel) and 8.5 vol.% martensite. Test results showed reduction in toughness with increasing VM in TP steels. Fracture toughness values for the DP and TP steels with 8.5 vol.% martensite were obtained from correlation between fracture... 

    Dispersion and deposition of nanoparticles in microchannels with arrays of obstacles

    , Article Microfluidics and Nanofluidics ; Volume 21, Issue 4 , 2017 ; 16134982 (ISSN) Banihashemi Tehrani, S. M ; Moosavi, A ; Sadrhosseini, H ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Air pollutants are among the hazardous materials for human health. Therefore, many scientists are interested in removing particles from the carrier gas. In this study, flow of air and airborne particles through the virtual multi-fibrous filters that consist of different fiber cross-sectional shapes and arrangements is simulated where particle deposition and filtration performance are studied. Regular and irregular arrangements of fibers with the circular, elliptical, and equilateral triangular cross sections have been considered. Effects of important parameters such as solid volume fraction, internal structure, and filter thickness on particle collection efficiency and pressure drop are... 

    Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field

    , Article Journal of Magnetism and Magnetic Materials ; Volume 428 , 2017 , Pages 457-463 ; 03048853 (ISSN) Amani, M ; Amani, P ; Kasaeian, A ; Mahian, O ; Kasaeian, F ; Wongwises, S ; Sharif University of Technology
    Abstract
    In this paper, an experimental evaluation on the viscosity of water-based manganese ferrite nanofluid with and without magnetic field with 100, 200, 300, and 400 G intensities has been conducted. The Brookfield DV-I PRIME viscometer is implemented to measure the MnFe2O4/water nanofluid viscosity and to evaluate the influence of different volume concentrations (from 0.25% to 3%) and various temperatures (from 20 to 60 °C) on the viscosity. According to the measurements, viscosity incrementally increases with the augmentation of nanoparticles concentration while it remarkably decreases at higher temperatures under absence and attendance of magnetic field. The maximum viscosity ratio of 1.14 is... 

    Entropy generation of turbulent Cu–water nanofluid flow in a heat exchanger tube fitted with perforated conical rings

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 138, Issue 2 , 2019 , Pages 1423-1436 ; 13886150 (ISSN) Nakhchi, M. E ; Esfahani, J. A ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Entropy generation analysis for the Cu–water nanofluid flow through a heat exchanger tube equipped with perforated conical rings is numerically investigated. Frictional and thermal entropy generation rates are defined as functions of velocity and temperature gradients. Governing equations are solved by using finite volume method, and Reynolds number is in the range of 5000–15,000. The effects of geometrical and physical parameters such as Reynolds number, number of holes and nanoparticles volume fraction on the thermal and viscous entropy generation rates and Bejan number are investigated. The results indicate that the thermal irreversibility is dominant in most part of the tube. But it... 

    Comparison of experimental and analytical fracture toughness values of SiCP/QE22 Mg-alloy composites

    , Article Materials and Design ; Volume 27, Issue 6 , 2006 , Pages 520-525 ; 02641275 (ISSN) Abachi, P ; Purazrang, K ; Sharif University of Technology
    2006
    Abstract
    In the present work, the fracture toughness data generated on the QE22 magnesium alloy as the matrix alloy and SiC particles reinforced composites using the short rod standard specimens. The short rod specimens of 18 mm diameter were prepared from the extruded rods in the extrusion direction. The fracture toughness values are primarily evaluated experimentally and then analytically by using mathematical methods. The suitability of these methods to predict this property was also discussed. Results showed that the incorporation of the SiC particles with three different shapes (i.e. sharp, blocky and round) decreases in general the fracture toughness of the QE22 Mg-alloy. This effect is... 

    Progressive damage analysis of an adhesively bonded composite T-joint under bending, considering micro-scale effects of fiber volume fraction of adherends

    , Article Composite Structures ; Volume 258 , 2021 ; 02638223 (ISSN) Barzegar, M ; Davoodi Moallem, M ; Mokhtari, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, a numerical study on failure assessment and stress distribution on the adhesive region in a composite T-joint under bending load case is investigated using cohesive zone method (CZM). The Finite Element Model (FEM) has been verified with experimental results. To study the load transfer capability of the T-joint, five different adhesives are considered in the adhesive region and the effect of geometrical parameters such as stringer thickness, corner radius, and adherend thickness as well as micromechanical properties of reinforced fiber composite adherends are investigated. Effective properties of two composite adherends including Carbon-Epoxy (IM7/8552) and Glass-Epoxy... 

    Bonded composite patch repair’s fiber VF effects on damaged Al-plates fatigue employing a multi-scale algorithm

    , Article Journal of Reinforced Plastics and Composites ; Volume 40, Issue 1-2 , 2021 , Pages 29-40 ; 07316844 (ISSN) Davoodi Moallem, M ; Barzegar, M ; Abedian, A ; Kordkheili, S. A. H ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Recently, bonded composite patch repair, because of its significant advantages over traditional methods, has been highly accepted in several industries, particularly in aerospace applications. In this paper, a multi-scale finite element algorithm is proposed to simulate crack growth of repaired plates under fatigue load by considering the effects of composite micro-scale properties. The algorithm is verified through conducting an experimental set up and the proposed model is in reasonable agreement with experiments. The influences of different fiber volume fractions (VF), number of layers and fiber orientation of composite patch on the fatigue responses of adhesively bonded patch are... 

    Correlation between Luder strain and retained austenite in TRIP-assisted cold rolled steel sheets

    , Article Materials Science and Engineering A ; Volume 447, Issue 1-2 , 2007 , Pages 174-179 ; 09215093 (ISSN) Emadoddin, E ; Akbarzadeh, A ; Daneshi, G. H ; Sharif University of Technology
    2007
    Abstract
    In developed multiphase high strength, high formability TRIP-aided steel, Luders bands are observed similar to conventional low carbon steels. Retained austenite as the most effective constituent in TRIP steels, is responsible for Luders band formation as well as other properties such as formability, physical and mechanical properties. In the present study, a correlation between the Luders strain and the retained austenite characterization is proposed and verified by experimental evidences of the work carried out on two types of TRIP steel sheets. Intercritical annealing of cold rolled TRIP steels at different temperatures change the volume fraction of the retained austenite as well as the... 

    Bonded composite patch repair’s fiber VF effects on damaged Al-plates fatigue employing a multi-scale algorithm

    , Article Journal of Reinforced Plastics and Composites ; 12 July , 2020 Davoodi Moallem, M ; Barzegar, M ; Abedian, A ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Recently, bonded composite patch repair, because of its significant advantages over traditional methods, has been highly accepted in several industries, particularly in aerospace applications. In this paper, a multi-scale finite element algorithm is proposed to simulate crack growth of repaired plates under fatigue load by considering the effects of composite micro-scale properties. The algorithm is verified through conducting an experimental set up and the proposed model is in reasonable agreement with experiments. The influences of different fiber volume fractions (VF), number of layers and fiber orientation of composite patch on the fatigue responses of adhesively bonded patch are... 

    A Multi-Scale Method for Modeling and Analysis of the Creep Behavior in Composite plates

    , M.Sc. Thesis Sharif University of Technology Barzegar, Mohsen (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    Polymer matrix composites, which are composed of a wide variety of short or long fibers bound together by organic polymer matrix, have been widely utilized in many engineering aeras, particularly in aerospace engineering. Recently, studying and analyzing the mechanical behavior of composites was one of the major reaserch interests. Regarding the vast variety of data drived from experimental tests, a requirement of tools that could facilitate estimating creep properties of materials is an important concern for researchers. The present work at first, introduces some major creep models and then proposes a 3D creep Burgers model for implementing in abaqus which could be used in macro phase. This... 

    The Effect of Martensite Volume Fraction on Toughness of Triple-Phase Steels

    , M.Sc. Thesis Sharif University of Technology Zare, Ahmad (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    AISI 4340 steel bars were austenitized at 900°C for 1 hour followed by heating at 740°C (ferrite and austenite region) for 100 min and quenching into a salt bath at 300°C for different times followed by quenching into water to obtain triple phase microstructures with 34 Vol.% ferrite and various martensite (or bainite) contents. Presence of three phases in adjacent of each other confirmed by metallographic analysis and TEM technique. Volume fraction of different phases was measured by image analyser. The results of optical microscopy showed that by increasing VM, morphology of martensite varies from uniform distribution of small spherical network particles to large blocky islands with... 

    The Effect of Bainite Volume Fraction and Morphology on the Wear Resistance of a Ferrite-Bainite Dual phase Steel

    , M.Sc. Thesis Sharif University of Technology Safarpour, Masoud (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    The studied steel was AISI 4340 steel. In order to obtain dual-phase steel with a volume fraction of 60, 66 and 75% bainite, samples were heated in the α+γ region at temperatures of 730, 735 and 740 oC for 120 minutes and then to create lower and upper morphology of bainite, samples were transferred directly to salt bath at different target temperatures (300 oC and 400 oC) and kept 60 minutes. Also, to produce a Martemper microstructure, the full martensitic sample was tempered at 260 oC for 90 minutes. Tensile and hardness tests revealed that with the increasing volume fraction of lower bainite, yield strength, tensile strength, and hardness increased from 986 to 1211 MP, 1185 to 1519, and... 

    Modeling the Thermomechanical Behaviour of Shape Memory Materials Using Analytical and Numerical Methods

    , M.Sc. Thesis Sharif University of Technology Taghikhani, Yaser (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    Shape memory materials are a kind of smart materials which recently have been used in a wide range of fields in particular medicine and aerospace. These materials can be divided to shape memory polymers and shape memory alloys. The basis of shape memory alloys’ properties is a thermoelastic martensitic transformation taking place between a high symmetric phase, called Austenite, and a low symmetric phase, called Martensite. In this project, by means of finite element methods, continuum thermomechanics and selection of appropriate internal variables (such as amount and orientation of volumetric fraction of each phase) and control variables (like strain, stress, temperature and entropy), their... 

    A study on the axial stresses of P-FGM, SFGM and E-FGM plates under pressure loading using the energy concept

    , Article 27th Congress of the International Council of the Aeronautical Sciences 2010, ICAS 2010, 19 September 2010 through 24 September 2010, Nice ; Volume 3 , 2010 , Pages 2060-2068 ; 9781617820496 (ISBN) Dastoom Laatleyli, H ; Abedian, A ; Sharif University of Technology
    2010
    Abstract
    In this study the energy concept along with the classical plate theory (CPT), first and third order shear deformation theories (FSDT and TSDT) are used to predict the large deflection and through the thickness stresses of a FGM plate. For defining the volume fraction of the FGM constituent materials three different functions are considered; simple power-law (PFGM), exponential (E-FGM) and sigmoid (S_FGM) functions. Power-law and exponential functions are commonly used tocontrol the variations of properties of FGMs. However, with both functions, a stress concentration appears due to abruptchange of the volume fraction of the constituents. Therefore, a sigmoid FGM is used to define a new...