Loading...
Search for: voltammetric-techniques
0.005 seconds

    A sensitive voltammetric morphine nanosensor based on BaFe12O19 nanoparticle-modified screen-printed electrodes

    , Article Journal of the Iranian Chemical Society ; Volume 17, Issue 3 , 2020 , Pages 717-724 Bagherinasab, Z ; Beitollahi, H ; Yousefi, M ; Bagherzadeh, M ; Hekmati, M ; Sharif University of Technology
    Springer  2020
    Abstract
    Morphine is a strong opioid used for the treatment of moderate to severe pain. Its use is, however, associated with adverse effects including sedation, nausea, constipation, respiratory depression, and development of tolerance as well as dependence. Thus, in this work electrochemical oxidation of morphine has been done on BaFe12O19 nanoparticles of the modified electrode. BaFe12O19 nanoparticles of the modified graphite screen-printed electrode (GSPE) and the bare GSPE were compared, representing that the modified electrode takes advantages of higher sensitivities and selectivities with lower limit of detection. Differential pulse voltammetric procedure has been used to analyze data. Results... 

    Rapid sol gel synthesis of BaFe12O19 nanoparticles: An excellent catalytic application in the electrochemical detection of tramadol in the presence of acetaminophen

    , Article Microchemical Journal ; Volume 156 , 2020 Bagherinasab, Z ; Beitollahi, H ; Yousefi, M ; Bagherzadeh, M ; Hekmati, M ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    The present study reports synthesis of BaFe12O19 nanoparticles by sol gel technique followed by its characterization using Energy dispersive X-ray spectroscopy (EDS), X-Ray diffraction (XRD), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM) analysis, and Fourier-transform infrared spectroscopy (FTIR). The BaFe12O19 nanoparticles have been applied to construct a modified graphite screen-printed electrode (GSPE). BaFe12O19/GSPE has been applied as a working electrode in the analysis of tramadol and acetaminophen by voltammetric techniques. The BaFe12O19/GSPE showed a good selectiveness for analysis of tramadol in the presence of acetaminophen with the... 

    Silver nanowires immobilized on gold-modified glassy carbon electrode for electrochemical quantification of atorvastatin

    , Article Journal of Electroanalytical Chemistry ; Volume 876 , November , 2020 Naseri, A ; Hormozi Nezhad, M. R ; Shahrokhian, S ; Asadian, E ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Development of simple yet precise sensing platforms for rapid determination of biological species and drugs is of paramount importance, not only for analysis of pharmaceutical formulations during the production stage, but also in clinical practices and medical diagnosis. In the present research, we report on the electrochemical determination of atorvastatin (ATOR) by using silver nanowires/gold-modified glassy carbon electrode (Ag NWs/Au/GCE). The modified electrode was constructed through a two-step procedure in which narrow silver nanowires synthesized via a polyol method are drop casted on a pre-modified GCE with electrodeposited gold particles. The results of XRD analysis indicated the... 

    Electrochemical determination of naltrexone on the surface of glassy carbon electrode modified with Nafion-doped carbon nanoparticles: Application to determinations in pharmaceutical and clinical preparations

    , Article Journal of Electroanalytical Chemistry ; Volume 638, Issue 2 , 2010 , Pages 212-217 ; 15726657 (ISSN) Ghorbani Bidkorbeh, F ; Shahrokhian, S ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    Abstract
    A new sensitive and selective electrochemical sensor was developed for determination of naltrexone (NAL) in pharmaceutical dosage form and human plasma. Naltrexone is an opioid antagonist which is commonly used for the treatment of narcotic addiction and alcohol dependence. A voltammetric study of naltrexone has been carried out at the surface of glassy carbon electrode (GCE) modified with Nafion-doped carbon nanoparticles (CNPs). The electrochemical oxidation of naltrexone was investigated by cyclic and differential pulse voltammetric techniques. The dependence of peak currents and potentials on pH, concentration and the potential scan rate was investigated. The electrode characterization...