Loading...
Search for: vof
0.006 seconds
Total 29 records

    Breakup of droplets in micro and nanofluidic T-junctions

    , Article Journal of Applied Fluid Mechanics ; Volume 6, Issue 1 , 2013 , Pages 81-86 ; 17353572 (ISSN) Bedram, A ; Moosavi, A ; Sharif University of Technology
    2013
    Abstract
    We employ numerical simulations to investigate the breakup of droplets in micro- and nanoscale T junctions, which are used to produce small droplets from a large droplet. For this purpose a Volume f Fluid (VOF) based method is used and for verifying the reliability of the numerical outcomes, the results are compared with the available experimental and analytical results. Our results reveal that breakup time and breakup length of the droplets play important roles in handling these systems optimally. Our results also indicate that for nanoscale Tjunctions by increasing the capillary number the performance increases while for the micro-scale systems there is a specific capillary number for... 

    Transient simulations of cavitating flows using a modified volume-of-fluid (VOF) technique

    , Article International Journal of Computational Fluid Dynamics ; Volume 22, Issue 1-2 , Volume 22, Issue 1-2 , 2008 , Pages 97-114 ; 10618562 (ISSN) Passandideh Fard, M ; Roohi, E ; Sharif University of Technology
    2008
    Abstract
    In this study, transient 2D/axisymmetric simulations of cavitating flows are performed using a modified 'Volume-of-Fluid' (VOF) technique. Simulation of the cavitation is based on a homogenous equilibrium flow model. To predict the shape of the cavity, the Navier-Stokes equations in addition to an advection equation for the liquid volume fraction are solved. Mass transfer between the phases is treated as a sink term in the VOF equation. The numerical method is used for different geometries in a wide range of cavitation numbers. Computed shapes of cavities were found to be in good agreement with those of the reported experiments. The simulation results also compared well with those obtained... 

    Numerical optimization of three-cavity magneto mercury reciprocating (MMR) micropump

    , Article Engineering Applications of Computational Fluid Mechanics ; Volume 15, Issue 1 , 2021 , Pages 1954-1966 ; 19942060 (ISSN) Mehrabi, A ; Mofakham, A. A ; Shafii, M. B ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    The operation of the three-cavity magneto mercury reciprocating (MMR) micropump, whose prototype were presented in an earlier companion paper, was numerically explored. In the three-cavity MMR micropump, three mercury slugs are moved by a periodic Lorentz force with a phase difference in three separate cavities. A consecutive motion of the slugs in their cavities transfer air from the inlet to the outlet. Two-dimensional OpenFOAM simulations were carried out to explore the influence of electric current excitation phase difference and back-pressure. The numerical simulations predicted the MMR micropump (with no valve) with a phase difference of (Formula presented.) and (Formula presented.)... 

    Experimental and numerical approach to enlargement and determination of performance of primary sedimentation basin

    , Article 2007 5th Joint ASME/JSME Fluids Engineering Summer Conference, FEDSM 2007, San Diego, CA, 30 July 2007 through 2 August 2007 ; Volume 2 FORA, Issue PART A , March , 2007 , Pages 265-272 ; 0791842886 (ISBN); 9780791842881 (ISBN) Razmi, A. M ; Firoozabadi, B ; Sharif University of Technology
    2007
    Abstract
    In the present study, the presence of a baffle and its effect on the hydrodynamics of the flow in a primary settling tank has been investigated experimentally by ADV (Acoustic Doppler Velocimeter). On the other hand, the characteristics of this flow field were simulated by an unsteady two-phase finite volume method, and VOF (Volume of Fluid) model; and results were evaluated by the experimental data. The numerical calculation performed by using k - ε RNG model agrees well with experiments. It depicts the ability of this method in predicting the velocity profile and flow structure. In addition, the optimum position of the baffle to achieve the best performance of the tank was determined by... 

    Experimental and numerical approach to enlargement of performance of primary settling tanks

    , Article Journal of Applied Fluid Mechanics ; Volume 2, Issue 1 , 2009 , Pages 1-12 ; 17353572 (ISSN) Razmi, A ; Firoozabadi, B ; Ahmadi, G ; Sharif University of Technology
    2009
    Abstract
    Circulation regions always exist in settling tanks. These regions would result in short-circuiting enlargement of the dead zone and high flow mixing problems and avoid optimal particle sedimentation. Therefore, the main objective of the tank design process is to avoid formation of the circulation zone, which is known as dead zone. Experiments show that the tank performance can be improved by altering the geometry of the tank which leads to a different velocity distributions and flow patterns. In this paper, the presence of a baffle and its effect on the hydrodynamics of the flow field has been investigated in a primary settling tank. Hydrodynamics of the flow field in these basins is... 

    Modeling the effect of mould wall roughness on the melt flow simulation in casting process

    , Article Applied Mathematical Modelling ; Volume 28, Issue 11 , 2004 , Pages 933-956 ; 0307904X (ISSN) Mirbagheri, S. M. H ; Dadashzadeh, M ; Serajzadeh, S ; Taheri, A. K ; Davami, P ; Sharif University of Technology
    2004
    Abstract
    In this investigation a computational model has been developed which includes heat and mass transfer as well as effects of backpressure, and mould wall friction for the simulation of incompressible flow with free surfaces in mould cavity filling. The simulation of flow with free surfaces is based on the SOLA-VOF numerical algorithm, utilizing the finite difference method. The solid and free boundary conditions have been modified and a new algorithm has been developed to calculate the effect of cavity pressure and wall-slip ratio, during mould filling. In this algorithm, the effect of wall-slip ratio on filling pattern has been modeled with an experimental function. In order to verify the... 

    Simulation of melt flow in coated mould cavity in the casting process

    , Article Journal of Materials Processing Technology ; Volume 142, Issue 2 , 2003 , Pages 493-507 ; 09240136 (ISSN) Mirbagheri, S. M. H ; Esmaeileian, H ; Serajzadeh, S ; Varahram, N ; Davami, P ; Sharif University of Technology
    2003
    Abstract
    In this investigation, simulation of the 3D flow of incompressible molten metal in a mould cavity has been carried out. A code has been developed to include heat transfer and permeability of coating utilizing the finite difference method (FDM). To achieve this, solid and free boundary conditions have been modified and a new algorithm has been proposed to calculate the effect of coating permeability during mould filling. In this algorithm, the effect of coating permeability on the filling pattern has been modelled and compared with an experiment. The modelling of molten metal flow and the location of free surfaces has been simulated based on the SOLution Algorithm-Volume Of Fraction... 

    Numerical investigation of droplets breakup in a microfluidic T-junction

    , Article Applied Mechanics and Materials ; Volume 110-116 , 2012 , Pages 3269-3277 ; 16609336 (ISSN) ; 9783037852620 (ISBN) Bedram, A ; Moosavi, A ; Int. Assoc. Comput. Sci. Inf. Technol. (IACSIT) ; Sharif University of Technology
    2012
    Abstract
    A Volume of Fluid (VOF) method is used to stdy the breakup of droplets in T-junction geometries. Symmetric T-junctions, which are used to produce equal size droplets and have many applications in pharmacy and chemical industries, are considered. Two important factors namely "breakup time" and "breakup length" that can improve the performance of these systems have been introduced. In addition a novel system which consists of an asymmetric T-junction is proposed to produce unequal size droplets. The effects of the channel width ratio and the capillary number on the size and length of the generated droplets and also the time of the generation have been studied and discussed. For simulation the... 

    3D computer simulation of melt flow and heat transfer in the lost foam casting process

    , Article International Journal for Numerical Methods in Engineering ; Volume 58, Issue 5 , 2003 , Pages 723-748 ; 00295981 (ISSN) Mirbagheri, S. M. H ; Varahram, N ; Davami, P ; Sharif University of Technology
    2003
    Abstract
    A new mathematical model has been developed to simulate mould filling in the lost foam casting process, using the finite difference method. The simulation of molten flow and track of free surfaces is based on the SOLA-VOF numerical technique. An algorithm was developed to calculate the gas pressure of the evaporated foam during the mould filling. The effect of backpressure on the filling behaviour was modelled with an experimental function by adding three-dimensions 3DVOF functions. In order to verify the computational results, a thin grey iron plate was poured into a transparent mould. Cavity filling, foam depolymerization and gap formation were recorded with a 16mm high-speed camera. A... 

    Simulation of mould filling in lost foam casting process

    , Article International Journal of Cast Metals Research ; Volume 16, Issue 6 , 2003 , Pages 554-565 ; 13640461 (ISSN) Mirbagheri, S. M. H ; Ashuri, H ; Varahram, N ; Davami, P ; Sharif University of Technology
    Maney Publishing  2003
    Abstract
    In this investigation, an algorithm was developed to calculate the gas pressure at the melt/foam interface (gap) owing to degraded foam during mould filling in the lost foam casting process (LFC). The effect of back-pressure on mould filling was modelled using a new experimental function by the addition of a three-dimensional volume of fluid (3D-VOF) function. The molten flow and free surface were simulated using the solution algorithm-VOF (SOLA-VOF) numerical technique. To simulate the three-dimensional incompressible flow in the LFC, the pressure boundary conditions, heat transfer and foam gas pressure effect were modified. Finally, in order to verify the computational results of... 

    Separation of Metal Ions-based Microfluidic Platform for Liquid-liquid Extraction

    , M.Sc. Thesis Sharif University of Technology Foroozan, Peyman (Author) ; Mohammadi, Ali Asghar (Supervisor) ; Karimi Sabet, Javad (Co-Advisor)
    Abstract
    Continuous separation processes in microfluidic devices experienced a steep rise in attention during the last two decades. Among the different separation processes, liquid-liquid extraction especially benefits from the short molecular diffusion distance and large specific interfacial area, as these are advantageous for effective mass transport. In the present study, glass-based microfluidic devices have been fabricated utilizing laser ablation and wet chemical etching methods then experiments and numerical simulation were carried out to investigate hydrodynamic behavior of fluid flow in Y-junction microfluidic. In order to achieve phase separation at the end of the microchannel, a phase... 

    The investigation of natural super-cavitation flow behind three-dimensional cavitators: Full cavitation model

    , Article Applied Mathematical Modelling ; Volume 45 , 2016 , Pages 165-178 ; 0307904X (ISSN) Kadivar, E ; Kadivar, Erfan ; Javadi, K ; Javadpour, S. M ; Sharif University of Technology
    Elsevier Inc 
    Abstract
    In this study, natural super-cavitating flow around three different conical cavitators with wedge angles of 30°, 45° and 60° is investigated. We apply the k−ϵ turbulence model and the volume of fluid (VOF) technique to numerically study the three-dimensional cavitating flow around the cavitators. The turbulence approach is coupled with a mass transfer model which is implemented into the finite-volume package. Simulations are performed for different cavitation numbers. Finally, the effects of some important parameters such as the cavitation index, inlet velocity, Froude number and wedge angle of cavitators on the geometrical characteristics of the super-cavities are discussed. Our numerical... 

    Numerical modeling of splashing and air entrapment in high-pressure die casting

    , Article International Journal of Advanced Manufacturing Technology ; Volume 39, Issue 3-4 , 2008 , Pages 219-228 ; 02683768 (ISSN) Homayonifar, P ; Babaei, R ; Attar, E ; Shahinfar, S ; Davami, P ; Sharif University of Technology
    2008
    Abstract
    High-pressure die casting (HPDC) is one of the most important manufacturing processes. Air porosity in HPDC parts has many serious effects upon the casting quality. A 3D single-phase code based on the SOLA-VOF algorithm is used for the continuous phase advection during mold filling. In this research, a computational model based on concentration transport equation is used for calculation of air porosity distribution and a mixed VOF-Lagrange algorithm is developed in order to model splashing in HPDC. Finally, Schmid's experimental tests are used to verify the modelling results and the comparison between the experimental data and simulation results has shown a good agreement. © 2007... 

    Three Dimensional Simulation of Morphology of Nanodroplets Near and on Structured Substrates

    , M.Sc. Thesis Sharif University of Technology Vahid, Afshin (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Mesoscopic hydrodynamic equations are solved employing a VOF based method to investigate the equilibrium shape of nanodroplets positioned over various topographic geometries of the supporting substrate for three-dimensional systems. By taking into account liquid-liquid and liquid-solid interactions a complex distribution for inter-molecular forces over the substrates (the disjoining pressure) is observed. In this research we show that motion of nanodroplets not only caused by contact angle difference in drplets two sides, but also depend on disjoining pressure parameters.Geometries with increasing complexities, from wedges to three dimensional edges and wedges, were explored with the main... 

    Simulation of Rapid Formation of Multicellular Spheroids in Double-emulsion Droplets with Controllable Microenvironment

    , M.Sc. Thesis Sharif University of Technology Talakoob Shirazi, Shahriar (Author) ; Moosavi, Ali (Supervisor) ; Sadrhosseini, Hani (Supervisor)
    Abstract
    This study is aimed at simulation of double emulsion formation in a microfluidic double flow focusing device which consists of two cross-junctions connected serially. The water in oil (w/o) emulsions are produced in the first junction. In the second junction, water in oil emulsions are encapsulated by an outer aqueous phase to generate water in oil in water (w/o/w) double emulsions. Water in oil emulsions are formed in hydrophobic channels and water in oil in water double emulsions are formed in hydrophilic channels. A three phase numerical model, based on the VOF-CSF method, is developed for simulating the process of double emulsion formation. An adaptive mesh refinement technique is... 

    Numerical Investigation of Motion of Droplets in Micro and Nanochannels

    , M.Sc. Thesis Sharif University of Technology Bedram, Ahmad (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    In this research, droplet motion in symmetric and asymmetric junctions in micro and nano scales was investigated. Droplets motion in symmetric and asymmetric junctions have many applications in many industries such as chemical and pharmacy. In this research symmetric T-junction in micro and nano sizes was simulated numerically in 2D and 3D formes. Also asymmetric T-junction (with unequal width branches) was simulated numerically in two cases, 2D and 3D. In the asymmetric T-junction, also an analyrical theory was developed. Numerical simulation was performed by using VOF techniqe and analytical theory was developed by thin film theory. For verifying the accuracy of numerical solution, grid... 

    Experimental and Numerical Study on Particle-Laden Flows

    , Ph.D. Dissertation Sharif University of Technology Afshin, Hossein (Author) ; Firoozabadi, Bahar (Supervisor) ; Rad, Manouchehr (Supervisor)
    Abstract
    Dense underflows are continuous currents that move down-slope due to their density being heavier than that of the ambient water. This difference between the dense fluid and environment fluid can be due to temperature difference, chemical materials, solved materials or suspend solid particles. In these currents, the effect of buoyancy force is produced by this difference density. In this research, many experiments performed in different flow rates, slopes and concentrations to understand the current structure and turbulence specification of the salt solution density currents and particle-laden density currents. Acoustic Doppler Velocimeter is used to measure the velocity fluctuations. The... 

    The effect of step on the hydraulic characteristics of the subcritical free surface flow in conveyance tunnel

    , Article Tunnelling and Underground Space Technology ; Volume 28, Issue 1 , 2012 , Pages 212-217 ; 08867798 (ISSN) Najafi, M. R ; Nabipour, M ; Sharif University of Technology
    Abstract
    Due to the water scarcity and uneven distribution of water resources, conveyance systems are designed to carry water through basins. For this purpose conveyance tunnels which carry supper/subcritical flows are commonly constructed. The occurrence of steps in the tunnels created by segment off-sets during the TBM operations would cause significant local head losses. As a result, the flow discharge may reduce. In this study subcritical free surface flow in conveyance tunnel is simulated using the one-dimensional HEC-RAS model. Impact of the invert segment off-set on the discharge rate is then estimated. Similarly a two-dimensional numerical model based on the Volume of Fluid (VOF) scheme is... 

    A novel method for producing unequal sized droplets in micro- and nanofluidic channels

    , Article European Physical Journal E ; Volume 38, Issue 9 , September , 2015 ; 12928941 (ISSN) Bedram, A ; Moosavi, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Abstract: We propose a novel method for producing unequal sized droplets through breakup of droplets. This method does not have the disadvantages of the available methods and also reduces the dependence of the droplets volume ratio on the inlet velocity of the system by up to 26 percent. The employed method for investigating the proposed system relies on 3D numerical simulation using the VOF algorithm and the results have been obtained with various valve ratios for both the micro- and nanoscale. The results indicate that the droplet length during the breakup process increases linearly with time. The droplet length at the nanoscale is smaller than that at the micro scale. It has been shown... 

    A Study on the effects of thermodynamic nonideality and mass transfer on multi-phase hydrodynamics using CFD methods

    , Article World Academy of Science, Engineering and Technology ; Volume 58 , 2009 , Pages 627-632 ; 2010376X (ISSN) Irani, M ; Bozorgmehry Boozarjomehry, R ; Pishvaie, M. R ; Tavasoli, A ; Sharif University of Technology
    2009
    Abstract
    Considering non-ideal behavior of fluids and its effects on hydrodynamic and mass transfer in multiphase flow is very essential. Simulations were performed that takes into account the effects of mass transfer and mixture non-ideality on hydrodynamics reported by Irani et al. In this paper, by assuming the density of phases to be constant and Raullt's law instead of using EOS and fugacity coefficient definition, respectively for both the liquid and gas phases, the importance of non-ideality effects on mass transfer and hydrodynamic behavior was studied. The results for a system of octane/propane (T=323 K, P =445 kpa) also indicated that the assumption of constant density in simulation had...