Loading...
Search for: viscous-flow
0.012 seconds
Total 84 records

    A numerical comparison of 2-D inviscid and viscous approaches for flow through a stage of an axial compressor

    , Article Scientia Iranica ; Volume 11, Issue 1-2 , 2004 , Pages 128-137 ; 10263098 (ISSN) Farhanieh, B ; Amanifard, N ; Ghorbanian, K ; Sharif University of Technology
    Sharif University of Technology  2004
    Abstract
    In this paper, an unsteady, two-dimensional solver is developed, based on Van Leer's flux splitting algorithm, in conjunction with the "Monotonic Upstream Scheme for Conservation Laws (MUSCL)" limiters for improving the order of accuracy. For a minimum usage of computer memory and faster convergence, the two-layer Baldwin-Lomax turbulence model is implemented for a viscous solution. Three test cases are prepared to validate the solver. The computed results are compared with experimental data and the good agreement of the compared results validates the solver. Finally, the solver is used for the flow through a multi-blade stage of an axial compressor in its design condition. The solutions of... 

    Analytical prediction of panel flutter using unsteady potential flow

    , Article Journal of Aircraft ; Volume 40, Issue 4 , 2003 , Pages 805-807 ; 00218669 (ISSN) Soltani, N ; Esfahanian, V ; Haddadpour, H ; Sharif University of Technology
    American Inst. Aeronautics and Astronautics Inc  2003
    Abstract
    An analytical procedure for supersonic flutter analysis of two-dimensional panels was developed using unsteady potential flow aerodynamic theory. The local spatial influence was considered as an integral over the plate area. The U-g method was used for flutter prediction. Results indicate a stabilizing effect of the unsteady potential flow aerodynamics theory compared to the quasi-steady first-order piston theory  

    Numerical Simulation of Compressible Viscous Flows Using Central Difference Finite Volume Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Katal, Ali (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, 2-D compressible viscous and inviscid flows are simulated by using a finite volume Lattice Boltzmann method. Two different models, namely, the Qu model and Watari model are employed for compressible flows simulations. The first model includes 13 discrete velocity vectors and 2 energy levels in which the Maxwellian function is replaced with a simple function for describing the distribution function that is suitable for inviscid flow simulations. The second model is a thermal multi-velocity model with isotropic tensors up to seventh rank that is suitable for compressible viscous and inviscid flow simulations with arbitrary specific heats ratio. In both the models, lattice... 

    Numerical Solution of 2D Incompressible Flow Using Spectral Difference Method

    , M.Sc. Thesis Sharif University of Technology Baradaran Kazemian, Behzad (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, an accurate numerical solution of the two-dimensional incompressible viscous flows is performed by using the spectral difference method on structured grids. The system of equations to be solved here is the preconditioned incompressible Navier-Stokes equations in the primitive variable formulation with the artificial compressibility approach. In the spectral difference method, two sets of the structured points, namely, “solution points” and “flux points” are defined in each cell for supporting the reconstruction of desirable order of accuracy. Here, the formulation of the spectral difference method is derived and the representative form of the solution and flux points for... 

    Formation and breakup patterns of falling droplets

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 68, Issue 9 , Jun , 2015 , Pages 1023-1030 ; 10407782 (ISSN) Sharafatmandjoor, S ; Taeibi Rahni, M ; Azwadi Che Sidik, N ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    Some interface front patterns of falling droplets are studied via direct numerical solution of the full Navier-Stokes equations governing the system of droplets and the ambient surrounding media as a single-fluid model. We focus on the mutual interactions of the effects of characterizing nondimensional parameters on the formation and break-up of large cylindrical droplets. The investigation of droplet cross sections and deformation angles shows that for moderate values of the Atwood number, increasing the Eötvös number explicitly increases the deformation rate in formation and breakup phenomena. Otherwise, increasing the Ohnesorge number basically amplifies the viscous effects  

    Entropy generation in thermally developing laminar forced convection through a slit microchannel

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010, Montreal, QC ; Issue PARTS A AND B , 2010 , Pages 515-526 ; 9780791854501 (ISBN) Sadeghi, A ; Baghani, M ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    The issue of entropy generation in laminar forced convection of a Newtonian fluid through a slit microchannel is analytically investigated by taking the viscous dissipation effect, the slip velocity and the temperature jump at the wall into account. Flow is considered to be hydrodynamically fully developed but thermally developing. The energy equation is solved by means of integral transform. The results demonstrate that to increase Knudsen number is to decrease entropy generation, while the effect of increasing values of Brinkman number and the group parameter is to increase entropy generation. Also it is disclosed that in the thermal entrance region the average entropy generation number... 

    Second law analysis for extended graetz problem including viscous dissipation in microtubes

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2010 Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, Montreal, QC, 1 August 2010 through 5 August 2010 ; Issue PARTS A AND B , 2010 , Pages 503-514 ; 9780791854501 (ISBN) Sadeghi, A ; Baghani, M ; Saidi, M. H ; Fluids Engineering Division ; Sharif University of Technology
    2010
    Abstract
    The entropy generation rate has become a useful tool for evaluating the intrinsic irreversibilities associated with a given process or device. This work presents an analytical solution for entropy generation in hydrodynamically fully developed thermally developing laminar flow in a microtube. The rarefaction effects as well as viscous heating effects are taken into consideration, but axial conduction is neglected. Using fully developed velocity profile, the energy equation is solved by means of integral transform. The solution is validated by comparing the local Nusselt numbers against existing literature data. From the results it is realized that the entropy generation decreases as Knudsen... 

    Second law analysis of slip flow forced convection through a parallel plate microchannel

    , Article Nanoscale and Microscale Thermophysical Engineering ; Volume 14, Issue 4 , 2010 , Pages 209-228 ; 15567265 (ISSN) Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    In the present work, the second law of thermodynamics analysis has been carried out for steady-state fully developed laminar gas flow in a parallel plate microchannel with asymmetrically heated walls. The rarefaction effects as well as viscous heating effects are taken into consideration. Closed-form expressions are obtained for velocity and temperature distributions and entropy generation rates. The results demonstrate that increasing values of the wall heat fluxes ratio result in greater entropy generation for positive Brinkman numbers, whereas the opposite is true for negative values of Brinkman. However, the effect of the wall heat fluxes ratio on entropy generation becomes insignificant... 

    Numerical simulation using a modified solver within OpenFOAM for compressible viscous flows

    , Article European Journal of Computational Mechanics ; Volume 28, Issue 6 , 2020 , Pages 541-572 Ghazanfari, V ; Salehi, A. A ; Keshtkar, A ; Shadman, M. M ; Askari, M. H ; Sharif University of Technology
    River Publishers  2020
    Abstract
    In this work, we attempted to develop an Implicit Coupled Density-Based (ICDB) solver using LU-SGS algorithm based on the AUSM+ up scheme in OpenFOAM. Then sonicFoam solver was modified to include viscous dissipation in order to improve its capability to capture shock wave and aerothermal variables. The details of the ICDB solver as well as key implementation details of the viscous dissipation to energy equation were introduced. Finally, two benchmark tests of hypersonic airflow over a flat plate and a 2-D cylinder were simulated to show the accuracy of ICDB solver. To verify and validate the ICDB solver, the obtained results were compared with other published experimental data. It was... 

    A new approach to the analytical and numerical solution of the bidirectional vortex flow

    , Article 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, 8 July 2007 through 11 July 2007 ; Volume 5 , 2007 , Pages 4856-4869 ; 1563479036 (ISBN); 9781563479038 (ISBN) Jamaly, S. M ; Saidi, M. H ; Ghafourian, A ; Mozafari, A. A ; Dehghani, S. R ; Sharif University of Technology
    2007
    Abstract
    The solution for bulk fluid motion of a bidirectional coaxial vortex for application in vortex engine has been derived. The vortex engine is a novel combustion chamber in which swirl motion of reactants are used to maintain the chamber walls cool. The flow field has been considered both analytically and numerically. The model is based on incompressible, steady, axisymmetric, and non-reactive flow conditions. The governing PDEs are reduced to a system of nonlinear ODEs and then, by a coordinate transformation, their singularity has been relaxed. Solution domain has been decomposed into the inner viscous and outer inviscid regions, then, the velocity and pressure fields are obtained... 

    Parameters affecting turbulent film cooling reynolds-averaged navier-stokes computational simulation

    , Article Journal of Thermophysics and Heat Transfer ; Volume 20, Issue 1 , 2006 , Pages 92-100 ; 08878722 (ISSN) Mahjoob, S ; Taeibi Rahni, M ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2006
    Abstract
    Film cooling of surfaces appears in many applications. For instance, it is one of the most effective methods to improve the efficiency of gas turbines. As a fundamental study, two different types of film cooling (slot and discrete holes injections) are numerically simulated here. A flat surface is used to model a small portion of a gas turbine blade. Incompressible, stationary, viscous, turbulent flow is assumed using the STAR-CD software with the standard k-ε model and a cell-centered finite volume method on a nonuniform structured grid. The jet flow Reynolds number, based on the jet's hydraulic diameter, is 4.7 × 103. The study of the injection angle and the velocity ratio shows that the... 

    Meshless local petrov-galerkin (MLPG) method for incompressible viscous fluid flows

    , Article 2006 2nd ASME Joint U.S.-European Fluids Engineering Summer Meeting, FEDSM 2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 2006 , 2006 ; 0791837831 (ISBN); 9780791837832 (ISBN) Haji Mohammadi, M ; Sharif University of Technology
    2006
    Abstract
    In this paper, the truly Meshless Local Petrov-Galerkin (MLPG) method is extended for computation of unsteady incompressible flows, governed by the Navier-Stokes equations (NSE), in vorticity-stream function formulation. The present method is a truly meshless method based only on a number of randomly located nodes. The formulation is based on two equations including stream function Poisson equation and vorticity advection-dispersion-reaction eq. (ADRE). The meshless method is based on a local weighted residual method with the Heaviside step function and quartic spline as the test functions respectively over a local subdomain. Moving Least Square approximation (MLS) is employed in shape... 

    Aerodynamic analysis of circular and noncircular bodies using computational and semi-empirical methods

    , Article Journal of Aircraft ; Volume 41, Issue 2 , 2004 , Pages 399-402 ; 00218669 (ISSN) Mahjoob, S ; Mani, M ; Taeibi Rahni, M ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2004
    Abstract
    The comparison of aerodynamic characteristics of circular and noncircular bodies using computational-fluid-dynamics (CFD) code and semi-emperical code was discussed. It was observed that the performance of aerodynamic coefficients was better for squared section body at different angles of attack. It was also observed from the study of the flow physics that the pressure difference between the front and back of the body that produce pressure drag was more in the circular body. Results show that the friction drag is more for the square body than the circular body as the surface area of the square body is large  

    Application of a preconditioned high-order accurate artificial compressibility-based incompressible flow solver in wide range of Reynolds numbers

    , Article International Journal for Numerical Methods in Fluids ; Volume 86, Issue 1 , 2018 , Pages 46-77 ; 02712091 (ISSN) Hejranfar, K ; Parseh, K ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    In the present study, the preconditioned incompressible Navier-Stokes equations with the artificial compressibility method formulated in the generalized curvilinear coordinates are numerically solved by using a high-order compact finite-difference scheme for accurately and efficiently computing the incompressible flows in a wide range of Reynolds numbers. A fourth-order compact finite-difference scheme is utilized to accurately discretize the spatial derivative terms of the governing equations, and the time integration is carried out based on the dual time-stepping method. The capability of the proposed solution methodology for the computations of the steady and unsteady incompressible... 

    Numerical Solution of Two-dimensional Compressible Flow Using Immersed Boundary Method with Compact Finite Difference Scheme

    , M.Sc. Thesis Sharif University of Technology Mashayekh, Erfan (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, the viscous compressible flow is simulated over two-dimensional geometries by using the immersed boundary method and applying a high-order accurate numerical scheme. A fourth-order compact finite-difference scheme is used to accurately discretize the spatial derivative terms of the governing equations and the time integration is performed by the fourth-order Runge–Kutta scheme. To regularize the numerical solution and eliminate spurious modes due to unresolved scales, nonlinearities and inaccuracies in implementing boundary conditions, high-order low-pass compact filters are applied. A uniform Cartesian grid that is not coincident with the body surface is used and the boundary... 

    Numerical Simulation of Viscous Compressible Flow Around an Oscilating Airfoil Using Immersed Boundary Method

    , M.Sc. Thesis Sharif University of Technology Gholami Haghighi Fard, Morteza (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the computation of the viscous compressible flow over two-dimensional geometries is performed by using the immersed boundary method and applying a second-order finite volume scheme. For the solution of the governing equations, a uniform Cartesian grid that is not coincident with the body surface is used and the boundary conditions on the wall are satisfied by the ghost-cell immersed boundary method. The spatial discretization of the fluid equations is carried out using the second-order central difference finite volume scheme and the time integration is performed by applying the fourth-order Runge-Kutta method. To stabilize the solution algorithm and reduce unwanted... 

    Pore Network Modeling for Separation of Multicomponent Gas Mixtures by Nanoporous Membranes

    , M.Sc. Thesis Sharif University of Technology Khajvand, Mahdieh (Author) ; Soltanieh, Mohammad (Supervisor) ; Jamshidi, Saeed (Supervisor)
    Abstract
    The aim of this research is to model the separation and transport of multi-component gas mixture through a nanoporous membrane by using pore network models (PNM).
    The first part of this project represents the membrane simulating by means of the PNM. A three-dimensional network is used to represent the membrane’s pore space and it consists of two parts; pore and throat. The pores are the main parts of the network and their diameter is characterized according to the pore size distribution of the membrane. Every throat connects two pores and the number of throats which is connected to each pore is named "coordination number". Using a variety size of pores and throats leads to production of... 

    Development of Spectral Difference Lattice Boltzmann Method for Solution of Compressible Flows

    , Ph.D. Dissertation Sharif University of Technology Ghaffarian, Ali (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this research, the spectral difference lattice Boltzmann method (SDLBM) is developed and applied for an accurate simulation of two-dimensional (2D) inviscid and viscous compressible flows on the structured and unstructured meshes. The compressible form of the discrete Boltzmann-BGK equation is used in which multiple particle speeds have to be employed to correctly model the compressibility in a thermal fluid. Here, the 2D compressible Lattice Boltzmann (LB) model proposed by Watari is used. The spectral difference (SD) method is implemented for the solution of the LB equation in which the particle distribution functions are stored at the solution points while the fluxes are calculated... 

    Thermal transport characteristics of non-newtonian electroosmotic flow in a slit microchannel

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011, 19 June 2011 through 22 June 2011 ; Volume 1 , June , 2011 , Pages 169-176 ; 9780791844632 (ISBN) Babaie, A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    Electroosmosis has many applications in fluid delivery at microscale, sample collection, detection, mixing and separation of various biological and chemical species. In biological applications, most fluids are known to be non-Newtonian. Therefore, the study of thermal features of non-Newtonian electroosmotic flow is of great importance for scientific communities. In the present work, the fully developed electroosmotic flow of power-law fluids in a slit microchannel is investigated. The related equations are transformed into non-dimensional forms and necessary changes are made to adapt them for non-Newtonian fluids of power-law model. Results show that depending on different flow parameters... 

    Mixed convection in a vertical channel containing porous and viscous fluid regions with viscous dissipation and inertial effects: A perturbation solution

    , Article Journal of Heat Transfer ; Volume 133, Issue 9 , 2011 ; 00221481 (ISSN) Hajipour, M ; Dehkordi, A. M ; Sharif University of Technology
    2011
    Abstract
    In this paper, combined forced and natural convection in a vertical channel containing both porous and viscous regions taking into account the influences of inertial force and viscous dissipation has been studied. In this regard, fully developed fluid flow in the porous region was modeled using the Brinkman-Forchheimer extended Darcy model. To solve governing equations of both the porous and viscous regions including thermal energy and momentum equations, a two-parameter perturbation method was applied. The velocity and temperature distributions of both the regions were obtained in terms of various parameters such as inertial force, Grashof, Reynolds, and Brinkman numbers, as well as various...