Loading...
Search for: vapour-pressure
0.009 seconds

    A numerical analysis of vapor flow in concentric annular heat pipes

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 126, Issue 3 , 2004 , Pages 442-448 ; 00982202 (ISSN) Nouri Borujerdi, A ; Layeghi, M ; Sharif University of Technology
    2004
    Abstract
    A numerical method based on the SIMPLE algorithm has been developed for the analysis of vapor flow in a concentric annular heat pipe. The steady-state response of a concentric annular heat pipe to various heat fluxes in the evaporator and condenser sections are studied. The fluid flow and heat transfer in the annular vapor space are simulated using Navier-Stokes equations. The governing equations are solved numerically, using finite volume approach. The vapor pressure and temperature distributions along a concentric annular heat pipe are predicted for a number of symmetric test cases. The vapor flow reversal and transition to turbulence phenomena are also predicted. The results are compared... 

    Pool boiling heat transfer in dilute water/triethyleneglycol solutions

    , Article Chinese Journal of Chemical Engineering ; Volume 17, Issue 4 , 2009 , Pages 552-561 ; 10049541 (ISSN) Alavi Fazel, S. A ; Safekordi, A. A ; Jamialahmadi, M ; Sharif University of Technology
    Abstract
    Boiling of water/triethyleneglycol (TEG) binary solution has a wide-ranging application in the gas processing engineering. Design, operation and optimization of the involved boilers require accurate prediction of boiling heat transfer coefficient between surface and solution. In this investigation, nucleate pool boiling heat transfer coefficient has been experimentally measured on a horizontal rod heater in water/TEG binary solutions in a wide range of concentrations and heat fluxes under ambient condition. The present experimental data are correlated using major existing correlations. In addition a correlation is presented for prediction of pool boiling heat transfer for the system in which...