Loading...
Search for: vapor-deposition
0.009 seconds
Total 140 records

    The effect of oxidation of macroporous silicon on carbon nanotubes growth by TCVD method

    , Article Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry ; Volume 37, Issue 6 , 2007 , Pages 489-492 ; 15533174 (ISSN) Mortazavi, S. Z ; Iraji zad, A ; Taghavi, N. S ; Reyhani, A ; Sharif University of Technology
    2007
    Abstract
    Carbon nanotubes (CNTs) were grown on deposited Ni on macroporous silicon by thermal chemical vapor deposition (TCVD) method using CH4 as the reaction gas. Macroporous silicon was fabricated by electrochemical etching of P-type silicon in organic electrolytes. The effect of oxidation of porous silicon (PS) on growth rate, morphology and structure of CNTs has been studied. The SEM micrographs and Raman spectra indicated that the nanotubes grown on the oxidized PS are more homogeneous and regular than those grown on the pristine PS and growth rate of CNTs grown on oxidized PS higher than those grown on pristine PS. In addition, the CNTs grown on the non-oxidized PS have different morphology... 

    Synthesis and Characterization of Grapheme Foams Fabricated by Chemical Vaporization Deposition

    , M.Sc. Thesis Sharif University of Technology Mahboubi, Sajad (Author) ; Akhavan, Omid (Supervisor) ; Azimirad, Rouhollah (Co-Advisor)
    Abstract
    The main purpose of this theses is to synthesize graphene by chemical vapor deposition (CVD) of a hydrocarbon gas such as methane on the nickel foam substrate and then to characterize this kind of graphene. Graphene is a single layer of carbon atoms, discovered in 2004, which has led mankind to new eras in all fields by its extraordinary features such as extra high electron mobility, high thermal conductivity, excellent mechanical strength, optical transparence and extra high specific surface. The advantage of this method compared to other methods is that the graphene generated has a better structural quality. Graphene foam firstly, because of the continuity of the foam structure, has better... 

    Decorated CNT based on porous silicon for hydrogen gas sensing at room temperature

    , Article RSC Advances ; Volume 6, Issue 50 , 2016 , Pages 44410-44414 ; 20462069 (ISSN) Ghorbani Shiraz, H ; Razi Astaraei, F ; Fardindoost, S ; Hosseini, Z. S ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    A new triple-component sensor for detection of H2 was developed based on porous silicon and CNTs. An increase in deposition of CVD catalysis was shown to promote a high and fast response. Also, it was shown that the composite system exhibited good selectivity  

    Comparison of synthesis and purification of carbon nanotubes by thermal chemical vapor deposition on the nickel-based catalysts: NiSio2 and 304-type stainless steel

    , Article Journal of Applied Sciences ; Volume 10, Issue 9 , 2010 , Pages 716-723 ; 18125654 (ISSN) Fekri, L ; Jafari, A ; Fekri, S ; Shafikhani, A ; Vesaghi, M ; Behzadi, G ; Sharif University of Technology
    2010
    Abstract
    In this study by Thermal Chemical Vapor Deposition (TCVD) method, the synthesis of carbon nanotubes (CNTs) and temperature affects on the grown CNTs on the NiSio2 catalyst and 304-type stainless steel was investigated. The purification of the grown CNTs on the 304-type stainless steel was also investigated in this study. The synthesis and purification of the samples were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), termogravimetric analysis (TGA) and Raman spectroscopy. Our obtained result by SEM and TEM shows that densities of CNTs growth on the 304-type stainless steel are more than the CNTs growth on the NiSio2 catalyst and both of them have... 

    The effect of Pd addition to Fe as catalysts on growth of carbon nanotubes by TCVD method

    , Article Applied Surface Science ; Volume 254, Issue 20 , 15 August , 2008 , Pages 6416-6421 ; 01694332 (ISSN) Mortazavi, S. Z ; Reyhani, A ; Iraji zad, A ; Sharif University of Technology
    Elsevier  2008
    Abstract
    The effects of Pd addition to Fe (Pd/Fe = 0, 2.5/7.5, 5/5, 7.5/2.5 and 1) and growth temperatures (920 and 970 °C) on density, diameter and growth mode of carbon nanotubes (CNTs) have been studied. SEM observations and TG analyses confirmed that the CNT yields depend on Pd/Fe ratios as (7.5/2.5) > (5/5) > Pd > (2.5/7.5) > Fe at both growth temperatures. TEM data showed that addition of Pd results in tip growth mode. From Raman spectroscopy data, the order of samples' structural quality (I G /I D ratio) are Fe > Pd/Fe (2.5/7.5) > (5/5) > (7.5/2.5) > Pd and the I G /I D ratios increase by decreasing the growth temperature. Films with higher concentration of Fe (Pd/Fe = 0, 2.5/7.5) contain some... 

    Synthesis of Titanium Nanoparticles from Titanium Tetrachloride and Potassium Vapors Via Chemical Vapor Condensation Process

    , M.Sc. Thesis Sharif University of Technology Kookhaee, Hamed (Author) ; Halali, Mohammad (Supervisor)
    Abstract
    Titanium nanoparticles were synthesized by chemical vapor condensation (CVC) process. Titanium tetrachloride (TiCl4) as titanium’s precursor reacted with potassium as reductant, in vapor phase and the products were titanium nanoparticles encapsulated in potassium chloride. Dried Argon gas was employed as carrier gas. Resulting powders gathered in ethanol bath. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic adsorption spectroscopy (AAS) analysis were used to characterizing the products. The effect of Argon gas flow on nanoparticles size was investigated in this research. The particle size decreases with increasing Argon gas flow. The size of nanoparticles was under... 

    Design and Implement of Gas Distribution and Control System for Deposition of Nano-Structure through NFCVD

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Zabihollah (Author) ; Rashidian, Bizhan (Supervisor)
    Abstract
    For realization of nanosale photonic device required by the future system, electron beams, and scanning probe microscopes have been used to control the site on the subtrate. However, these techniques have a fatal disadvantage because they cannot deal with insulators and Diffraction of light, limiting their application.To overcome this difficulties, we design and implement near-field optical chemical vapor deposition, which enables the fabrication of nanometer-scale structure, while controlling their position. To guarantee that an optical near field is generated sufficiently, we fabricated a sharped W-tip by electrochemical etching. The separation between the W-tip and the substrate was kept... 

    Control of Size of Graphene Domain Synthesized by Chemical Vapor Deposition

    , M.Sc. Thesis Sharif University of Technology Amini, Negar (Author) ; Ghotbi, Sirus (Supervisor) ; Karimi Sabet, Javad (Supervisor)
    Abstract
    The chemical vapor deposition (CVD) of graphene from methane on a copper substrate is the most promising method for production of large-area graphene films. There have been long-standing challenges in this field such as controlling the graphene coverage, film quality, the number of layers, and the nucleation density of graphene domain. These challenges can be overcome by developing a fundamental understanding of the graphene growth process. The main aim of this study is to control nucleation density of graphene domains. Chemical vapor deposition (CVD) graphene is polycrystalline, and grain boundaries in graphene film have been identified to degrade the properties of graphene as a membrane... 

    A case study in vapor phase synthesis of Mg-Al alloy nanoparticles by plasma arc evaporation technique

    , Article Chemical Engineering Journal ; Volume 259 , 2015 , Pages 918-926 ; 13858947 (ISSN) Karbalaei Akbari, M ; Derakhshan, R ; Mirzaee, O ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Alloy nanoparticles in the Mg-Al system were prepared by plasma arc discharge method from the Mgx to Al (45%

    The laser-assisted field effect transistor gas sensor based on morphological zinc-excited tin-doped in2o3 nanowires

    , Article Surface Review and Letters ; Volume 24, Issue 8 , 2017 ; 0218625X (ISSN) Shariati, M ; Khosravinejad, F ; Sharif University of Technology
    Abstract
    The gas nanosensor of indium oxide nanowires in laser assisted approach, doped with tin and zinc for gas sensing and 1D growth purposes respectively, was reported. The nanowires were very sensitive to H2S gas in low concentration of 20 ppb gas at room temperature. The fast dynamic intensive and sensitive response to gas was in a few seconds with an on/off sensitivity ratio of around 10. The square cross-section indium oxide nanowires were fabricated through physical vapor deposition (PVD) mechanism and annealing approach. The field emission scanning electron microscopy (FESEM) observations indicated that the annealing temperature was vital in nanostructures' morphology. The fabricated... 

    The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor-liquid-solid (VLS) mechanism

    , Article Journal of Alloys and Compounds ; Volume 455, Issue 1-2 , 2008 , Pages 353-357 ; 09258388 (ISSN) Hejazi, S. R ; Madaah Hossein, H. R ; Ghamsari, M. S ; Sharif University of Technology
    2008
    Abstract
    Short ZnO nanorods and long ZnO nanowires have been produced on SiO2 and Si substrates by VLS and VS mechanisms via a double tube chemical vapor transport and condensation (CVTC) process. The role of reactants and droplet interfaces on the nucleation and growth of ZnO nanorods have been investigated. A conceptual model for nucleation of ZnO nanorods has been proposed by describing the half-oxidation and reduction reactions at the growth front. The importance of Zn vapor in the nucleation phenomena has been studied by changing starting materials. Atomic force microscopy (AFM), scanning electron microscopy (SEM), and EDX analysis have been used to characterize ZnO nanorods and investigate the... 

    Molecular dynamics of single wall carbon nanotube growth on nickel surface

    , Article Computational Materials Science ; Volume 36, Issue 1-2 , 2006 , Pages 117-120 ; 09270256 (ISSN) Esfarjani, K ; Gorjizadeh, N ; Nasrollahi, Z ; Sharif University of Technology
    2006
    Abstract
    Growth mechanism of a single wall carbon nanotube on the surface of a nickel nanoparticle in the CVD method has been investigated by classical molecular dynamics method. Using first principles methods, we have first constructed a classical potential to describe the interaction between a carbon atom and the nickel surface. The important ingredient in this potential is its coordination number dependence, which also provides the key to the growth mechanism of the nanotube. From the simulations, it is proposed that the growth of an armchair nanotube takes place via attachment of dimers to its end which is in contact with the nickel surface. The effect of nickel nanoparticle's radius on the... 

    Fabrication and characterization and biosensor application of gold nanoparticles on the carbon nanotubes

    , Article Applied Surface Science ; Volume 355 , November , 2015 , Pages 1175-1179 ; 01694332 (ISSN) Ghodselahi, T ; Aghababaie, N ; Mobasheri, H ; Zand Salimi, K ; Akbarzadeh Pasha, M ; Vesaghi, M. A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Gold nanoparticles (Au NPs) were synthesized by co-deposition of RF-sputtering and RF-PECVD from acetylene gas and Au target on the carbon nanotubes (CNTs). The CNTs were prepared by thermal chemical vapor deposition (TCVD) and Pd nanoparticles catalyst. TEM image shows that high-density and uniform distribution of Au NPs were grown on the CNTs. XRD analysis indicates that Au NPs have fcc crystal structure and CNTs have a good graphite structure. Raman spectroscopy results suggest that our sample includes double-walled CNTs. It is resulted that intensity of D-band reduces and G-band intensity raises and radial breathing mode (RBM) is changed by immobilizing of Au NPs on the CNTs. Raman... 

    Role of cooling rate in selective synthesis of graphene and carbon nanotube on Fe foil using hot filament chemical vapor deposition

    , Article 2016 IEEE 7th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2016, 20 October 2016 through 22 October 2016 ; 2016 ; 9781509014965 (ISBN) Abdolahi, M ; Kaminska, B ; Akhavan, O ; Talebi, S ; Ghoranneviss, M ; Arab, Z ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In this study, graphene sheets and carbon nanotubes (CNTs) were selectively grown on Fe foil at a relatively low growth temperature and varying cooling rates using a hot filament chemical vapor deposition (HFCVD) apparatus with C2H2 as the precursor. The results of the scanning electron microscopy and Raman spectroscopy revealed that the increase of the cooling rate from 7 to 10 or 20 °C/min provoked a structure transition from CNT to graphene. The optimum crystal quality of the graphene sheets (Iq/Id ∼1.1) was achieved at the cooling rate of 20 °C/min. According to the AFM analysis, the thickness of the stacked graphene sheets was found to be ∼2.9-3.8 nm containing ∼8-11 monolayers. The XRD... 

    Self-limited growth of large-area monolayer graphene films by low pressure chemical vapor deposition for graphene-based field effect transistors

    , Article Ceramics International ; Volume 43, Issue 17 , 2017 , Pages 15010-15017 ; 02728842 (ISSN) Kiani, F ; Razzaghi, Z ; Ghadiani, B ; Tamizifar, M ; Mohmmadi, M. H ; Simchi, A ; Sharif University of Technology
    Abstract
    During the last decade, fabrication of high-quality graphene films by chemical vapor deposition (CVD) for nanoelectronics and optoelectronic applications has attracted increasing attention. However, processing of large-area monolayer and defect-free graphene films is still challenging. In this work, we have studied the effect of processing conditions on the self-limited growth of graphene monolayers on copper foils during low pressure CVD both experimentally and theoretically based on thermokinetics and kinetics of Langmuir adsorption. The effect of copper pre-treatment, growth time, and carbon potential of the atmosphere (indicated by the methane-to-hydrogen gas ratio, r) on the quality of... 

    On the performance of vertical MoS2 nanoflakes as a gas sensor

    , Article Vacuum ; Volume 167 , 2019 , Pages 90-97 ; 0042207X (ISSN) Barzegar, M ; Iraji zad, A ; Tiwari, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Despite their potential applications, a limited number of studies for synthesizing vertical MoS2 nanoflakes especially via CVD have been reported so far, which generally involve tedious complex- and/or multi-step growth processes. In this study, direct synthesis of vertical MoS2 nanoflakes grown on the SiO2/Si substrate during a rapid sulfidation process by CVD method has been reported. Material characterization was performed using Raman spectroscopy, XRD and FE-SEM. The XRD results indicated the dominant phase of 2H–MoS2 within the synthesized layers. The characteristic distance between the two dominant peaks of E1 2g and A1g in the Raman spectra confirms the multi-layered structure for... 

    Catalytic activity of the spinel ferrite nanocrystals on the growth of carbon nanotubes

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 26, Issue 2 , 2013 , Pages 429-435 ; 15571939 (ISSN) Hosseini Akbarnejad, R ; Daadmehr, V ; Rezakhani, A. T ; Shahbaz Tehrani, F ; Aghakhani, F ; Gholipour, S ; Sharif University of Technology
    2013
    Abstract
    We prepared three ferrite nanocatalysts: (i) copper ferrite (CuFe 2O4) (ii) ferrite where cobalt was substituted by nickel (Nix Co1-x Fe2O4, with x=0, 0.2, 0.4, 0.6), and (iii) ferrite where nickel was substituted by zinc (Zn y Ni1-y Fe2O4 with y=1, 0.7, 0.5, 0.3), by the sol-gel method. The X-ray diffraction patterns show that the ferrite samples have been crystallized in the cubic spinel structural phase. We obtained the size of grains by field emission scanning electron microscopy images and their magnetic properties by vibrating sample magnetometer. Next, carbon nanotubes were grown on these nanocatalysts by the catalytic chemical vapor deposition method. We show that the catalytic... 

    Inhibitory effects of functionalized indium doped ZnO nanoparticles on algal growth for preservation of adobe mud and earthen-made artworks under humid conditions

    , Article International Biodeterioration and Biodegradation ; Volume 127 , Febraury , 2018 , Pages 209-216 ; 09648305 (ISSN) Shariati, M ; Mallakin, A ; Malekmohammady, F ; Khosravi Nejad, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this article, indium doped ZnO nanoparticles (alloy nanoparticles) were investigated as inhibitors against algae growth on adobe mud and earthen artworks for surface preservation from destruction caused by micro-organisms under humid conditions, through surface modification and activation run off. Nanoparticles (NPs) were fabricated by physical vapor deposition (PVD) growth mechanism. The fabricated NPs were approximately 20 nm in size. The Chlorella vulgaris and Scenedesmus quadricauda were tested by application of indium doped ZnO nanoparticles (In/ZnO NPs) as inhibitors. As concentrations of NPs increased, the negative impacts of NPs on the algal growth were enhanced and physical... 

    The highly crystalline tellurium doped ZnO nanowires photodetector

    , Article Journal of Crystal Growth ; Volume 522 , 2019 , Pages 214-220 ; 00220248 (ISSN) Khosravi Nejad, F ; Teimouri, M ; Jafari Marandi, S ; Shariati, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this paper, the stable and reproducible tellurium doped ZnO nanowires (Te-ZnO NWs) photodetector with intensive responsively is presented. The Te-ZnO NWs were fabricated by physical vapor deposition (PVD) growth mechanism. Field emission scanning electron microscope (FESEM) images showed that the fabricated nanowires were 50 nm in diameter and several microns in length. The high resolution transmission electron microscopy indicated that the synthesized nanowires were crystalline and their phase characterization was validated by the X-ray diffraction (XRD). The photoluminescence (PL) studies of these nanowires showed a strong photoluminescence (PL) emission peak in the green region. It was... 

    Control of Elements Ratio in Alloy Deposition System

    , M.Sc. Thesis Sharif University of Technology Kishani Farahani, Esmat (Author) ; Rashidian, Bijan (Supervisor)
    Abstract
    Nowadays, thin film alloy deposition has much importance. These alloys are used for various opto-electronic device applications such as liquid crystal displays, flat panel displays, plasma displays, solar cells and computer memories. Exact control of elements ratio in alloy is one of the important issues in deposition of thin film alloys. In alloy deposition with electron beam gun method from its elements, uniformity improvement of each layer is a way to maintain elements ratio in different parts of sample. This uniformity has much importance especially in optical coatings such as high quality antireflection coatings, highly selective filters and low loss reflectance coatings. In this...