Loading...
Search for: unconfined-compression
0.006 seconds

    Optimisation of deep mixing technique by artificial neural network based on laboratory and field experiments

    , Article Georisk ; 2019 ; 17499518 (ISSN) Ahmadi Hosseini, A ; Mojtahedi, F. F ; Sadeghi, H ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Ground improvement techniques are inevitable for weak soils that cannot endure the design load imposed by superstructures. Deep mixing technique (DMT) as one of these methods is promising and effective when a deep soil layer with low bearing capacity is encountered. Such deposits are quite common in the South-west of Iran where the studied site is located. In order to validate the influence of DMT on the enhancement of strength, both in-situ and laboratory tests were conducted. Afterwards, a parametric study was carried out to investigate the influence of key factors including cement content, water–cement ratio, curing time and plasticity index (PI) on the performance of DMT. In summary, a... 

    Optimisation of deep mixing technique by artificial neural network based on laboratory and field experiments

    , Article Georisk ; 2019 ; 17499518 (ISSN) Ahmadi Hosseini, S. A ; Mojtahedi, S. F. F ; Sadeghi, H ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Ground improvement techniques are inevitable for weak soils that cannot endure the design load imposed by superstructures. Deep mixing technique (DMT) as one of these methods is promising and effective when a deep soil layer with low bearing capacity is encountered. Such deposits are quite common in the South-west of Iran where the studied site is located. In order to validate the influence of DMT on the enhancement of strength, both in-situ and laboratory tests were conducted. Afterwards, a parametric study was carried out to investigate the influence of key factors including cement content, water–cement ratio, curing time and plasticity index (PI) on the performance of DMT. In summary, a... 

    Evaluation of using different nanomaterials to stabilize the collapsible loessial soil

    , Article International Journal of Civil Engineering ; 2020 Haeri, S. M ; Valishzadeh, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    Construction over problematic soils is a common problem in many parts of the world, and one of the effective procedures to tackle this problem is soil stabilization. Accordingly, the current study provides the finding of a laboratory investigation into the effect of three kinds of nanomaterials, including nano-silica (NS), nano-clay (NC) and nano-calcium carbonate (NCC) on the properties of a loessial collapsible soil. To accomplish this issue, reconstituted samples of the stabilized loessial soil were prepared for unconfined compression and consolidation tests. The results illustrated that an insignificant amount of nanomaterials (less than 1% of the total dry weight of the soil when is... 

    Evaluation of using different nanomaterials to stabilize the collapsible loessial soil

    , Article International Journal of Civil Engineering ; Volume 19, Issue 5 , 2021 , Pages 583-594 ; 17350522 (ISSN) Haeri, S.M ; Valishzadeh, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Construction over problematic soils is a common problem in many parts of the world, and one of the effective procedures to tackle this problem is soil stabilization. Accordingly, the current study provides the finding of a laboratory investigation into the effect of three kinds of nanomaterials, including nano-silica (NS), nano-clay (NC) and nano-calcium carbonate (NCC) on the properties of a loessial collapsible soil. To accomplish this issue, reconstituted samples of the stabilized loessial soil were prepared for unconfined compression and consolidation tests. The results illustrated that an insignificant amount of nanomaterials (less than 1% of the total dry weight of the soil when is... 

    Effect of polypropylene fibers and cement on the strength improvement of subgrade lying on expansive soil

    , Article Iranian Journal of Science and Technology - Transactions of Civil Engineering ; 2021 ; 22286160 (ISSN) Khan, S. Z ; Rehman, Z ; Khan, A. H ; Qamar, S ; Haider, F ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The current study revealed the effectiveness of polypropylene (PP) fibers and cement to enhance the strength of black cotton soil. PP fibers and cement with different concentrations were mixed with black cotton soil. The strength of PP fiber and cement-based soil samples was measured in terms of unconfined compressive strength (UCS) and California Bearing ratio (CBR). Specimens for UCS and CBR tests were prepared at 2%, 4%, 6% and 8% of cement (by dry weight of soil) and seven percentages of polypropylene fibers i.e. 0.0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5% and 0.6% (by dry weight of soil). Fourier transform infrared (FTIR) analysis confirmed the presence of polypropylene and cement contents in... 

    Effect of polypropylene fibers and cement on the strength improvement of subgrade lying on expansive soil

    , Article Iranian Journal of Science and Technology - Transactions of Civil Engineering ; Volume 46, Issue 1 , 2022 , Pages 343-352 ; 22286160 (ISSN) Khan, S. Z ; Rehman, Z ; Khan, A. H ; Qamar, S ; Haider, F ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    The current study revealed the effectiveness of polypropylene (PP) fibers and cement to enhance the strength of black cotton soil. PP fibers and cement with different concentrations were mixed with black cotton soil. The strength of PP fiber and cement-based soil samples was measured in terms of unconfined compressive strength (UCS) and California Bearing ratio (CBR). Specimens for UCS and CBR tests were prepared at 2%, 4%, 6% and 8% of cement (by dry weight of soil) and seven percentages of polypropylene fibers i.e. 0.0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5% and 0.6% (by dry weight of soil). Fourier transform infrared (FTIR) analysis confirmed the presence of polypropylene and cement contents in... 

    Optimisation of deep mixing technique by artificial neural network based on laboratory and field experiments

    , Article Georisk ; Volume 14, Issue 2 , 2020 , Pages 142-157 Ahmadi Hosseini, S. A ; Mojtahedi, S. F. F ; Sadeghi, H ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Ground improvement techniques are inevitable for weak soils that cannot endure the design load imposed by superstructures. Deep mixing technique (DMT) as one of these methods is promising and effective when a deep soil layer with low bearing capacity is encountered. Such deposits are quite common in the South-west of Iran where the studied site is located. In order to validate the influence of DMT on the enhancement of strength, both in-situ and laboratory tests were conducted. Afterwards, a parametric study was carried out to investigate the influence of key factors including cement content, water–cement ratio, curing time and plasticity index (PI) on the performance of DMT. In summary, a... 

    Effects of saturation degrees, freezing-thawing, and curing on geotechnical properties of lime and lime-cement concretes

    , Article Cold Regions Science and Technology ; Volume 160 , 2019 , Pages 242-251 ; 0165232X (ISSN) Jahandari, S ; Saberian, M ; Tao, Z ; Mojtahedi, S.F ; Li, J ; Ghasemi, M ; Rezvani, S. S ; Li, W ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    There are very limited researches carried out to investigate the influence of saturation degrees, freezing-thawing, and curing times on geotechnical properties of lime concrete (LC) and lime-cement concrete (LCC) due to the capillary action and changes in groundwater table. Subsequently, the primary goal of this research is to investigate the influence of these parameters on mechanical properties of LC and LCC using unconfined compression tests, namely uniaxial compressive strength (UCS), stress-strain behavior, deformability index (I D ), secant modulus (E S ), failure strain, bulk modulus (K), resilient modulus (M R ), brittleness index (I B ), and shear modulus (G). At first, the... 

    Mechanical characterization of brain tissue in compression

    , Article ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 21 August 2016 through 24 August 2016 ; Volume 3 , 2016 ; 9780791850138 (ISBN) Shafiee, A ; Ahmadian, M. T ; Hoviat Talab, M ; Computers and Information in Engineering Division; Design Engineering Division ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    The biomechanical behavior of brain tissue is needed for predicting the traumatic brain injury (TBI). Each year over 1.5 million people sustain a TBI in the United States. The appropriate coefficients for modeling the injury prediction can be evaluated using experimental data. In the present paper, using an experimental setup on bovine brain tissue, unconfined compression tests at quasi-static strain rates of ϵ 0.0004s-1, 0.008s-1 and 0.4s-1 combined with a stress relaxation test under unconfined uniaxial compression with ϵ 0.67s-1 ramp rate are performed. The fitted viscohyperelastic parameters were utilized by using obtained stressstrain curves. The finite element analysis (FEA) is... 

    The effects of AAFA stabilizer on the mechanical properties of rammed earth

    , Article 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics, IACMAG 2021, 5 May 2021 through 8 May 2021 ; Volume 126 , 2021 , Pages 326-333 ; 23662557 (ISSN); 9783030645175 (ISBN) Kosarimovahhed, M ; Toufigh, V ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    This paper presents an experimental study on the interfacial characteristics of rammed earth materials stabilized with the combination of cement and alkali-activated fly ash (AAFA), an eco-friendly alternative for cement. Several direct shear tests were conducted to obtain cohesion and friction angle to do so. Moreover, pulse velocity and unconfined compression tests were exploited to assess other physical and mechanical properties of this material. Through the methodology used in this work, it is shown that the replacement of cement with AAFA dramatically improved cohesion, compressive strength, and pulse velocity. However, no general correlation was observed for the friction angle. © 2021,... 

    An experimental study on mechanical behavior of a calcite cemented gravelly sand

    , Article Geotechnical Testing Journal ; Volume 41, Issue 3 , May , 2018 , Pages 494-507 ; 01496115 (ISSN) Shakeri, M. R ; Haeri, S. M ; Shahrabi, M. M ; Khosravi, A ; Sajadi, A. A ; Sharif University of Technology
    ASTM International  2018
    Abstract
    In the study presented herein, a simple method for laboratory calcite cementation of a reconstituted gravelly sand was presented. This method was used to prepare cemented gravelly sand specimens, which have similar natural characteristics to alluvial deposit of the city of Tehran. The formation and distribution of calcite bonds, as well as the effectiveness of the presented calcite cementation method in increasing interparticle cohesion, as observed in weakly to moderately cemented soil in Tehran, were evaluated by means of chemical analysis, X-ray diffraction technique, and unconfined compressive strength tests. The cementation technique was used to prepare triaxial specimens with calcite... 

    Sustainable usage of waste materials as stabilizer in rammed earth structures

    , Article Journal of Cleaner Production ; Volume 277 , December , 2020 Kosarimovahhed, M ; Toufigh, V ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Rammed earth (RE) is an eco-friendly building material and has been capturing special attention among researchers. Many of the recently studied RE additives are extremely resource- and energy-consuming. On the other hand, the usage of fly ash (FA), which is a sustainable replacement for cement, has been scarcely investigated in RE construction. In this paper, an experimental investigation was performed on the physical and mechanical properties of RE materials stabilized with the combination of cement and alkali-activated FA. This scrutiny consists of density measurements, pulse velocity tests, unconfined compression tests, and direct shear tests. Additionally, the carbon dioxide emission and... 

    Dynamic modeling of the turning process of slip-cast fused silica ceramics using the discrete element method

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 234, Issue 3 , 2020 , Pages 629-640 Roostai, H ; Movahhedy, M. R ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Simulation of brittle regime machining of materials (such as ceramics) is often difficult because of the complex material removal mechanisms involved. In this study, the discrete element method is used to simulate the dynamic process for machining of slip-cast fused silica ceramics. Flat-joint contact model is exploited to model contacts between particles in synthetic discrete element method models. This contact model is suitable for modeling of brittle materials with high ratios (higher than 10) of unconfined compressive strength to tensile strength. The discrete element method has the ability to simulate initiation, propagation, and coalescence of cracks leading to chip formation in the... 

    Effect of EPS beads in lightening a typical zeolite and cement-treated sand

    , Article Bulletin of Engineering Geology and the Environment ; Volume 80, Issue 11 , 2021 , Pages 8615-8632 ; 14359529 (ISSN) Khajeh, A ; Ebrahimi, S. A ; MolaAbasi, H ; Jamshidi Chenari, R ; Payan, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The current study aims to assess the influence of EPS beads inclusion on the strength properties of stabilized poorly-graded sands. Various contents of zeolite and cement as stabilizing agents, with the total amounts of 4, 8, and 12% by dry soil weight, and also 0, 0.25, and 0.5% weight ratios of EPS beads (η) are examined. Zeolite is opted among a variety of pozzolanic materials so as to replace a part of cement (0, 10, 30, 50, 70, and 90%) due to its superior environmentally friendly properties. The stress–strain behavior, unconfined compressive strength (UCS), peak strain energy (Eu), and California bearing capacity (CBR) of the zeolite and cement-treated sand-EPS beads mixtures are... 

    Modeling, simulation, and optimal initiation planning for needle insertion into the liver

    , Article Journal of Biomechanical Engineering ; Volume 132, Issue 4 , 2010 ; 01480731 (ISSN) Sharifi Sedeh, R ; Ahmadian, M. T ; Janabi Sharifi, F ; Sharif University of Technology
    2010
    Abstract
    Needle insertion simulation and planning systems (SPSs) will play an important role in diminishing inappropriate insertions into soft tissues and resultant complications. Difficulties in SPS development are due in large part to the computational requirements of the extensive calculations in finite element (FE) models of tissue. For clinical feasibility, the computational speed of SPSs must be improved. At the same time, a realistic model of tissue properties that reflects large and velocity-dependent deformations must be employed. The purpose of this study is to address the aforementioned difficulties by presenting a cost-effective SPS platform for needle insertions into the liver. The study...