Loading...
Search for: ultimate-load-carrying-capacity
0.005 seconds

    Effect of utilizing glass fiber-reinforced polymer on exural strengthening of rc arches

    , Article Scientia Iranica ; Volume 26, Issue 4A , 2019 , Pages 2299-2309 ; 10263098 (ISSN) Moradi, H ; Khaloo, A. R ; Shekarchi, M ; Kazemian, A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    An experimental study of the. flexural behavior of Reinforced-Concrete (RC) arches strengthened with Glass Fiber-Reinforced Polymer (GFRP) layers was performed. A total of 36 specimens including 3 un-strengthenod (control) and 33 strengthened RC arches were tested under centrally concentrated point load. The variables of this study were steel reinforcement ratio, number of GFRP layers, and location and arrangement of GFRP layers. Failure mode, load-displacement response of specimens, crack propagation patterns, and GFRP debonding were examined. The extrados strengthening method was shown to Ix1 more effective than the intrados strengthening one in improving the failure load and rigidity of... 

    Flexural behavior of timber beams strengthened with pultruded glass fiber reinforced polymer profiles

    , Article Composite Structures ; Volume 241 , 2020 Shekarchi, M ; Vatani Oskouei, A ; Raftery, G. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Timber is one of the materials widely used in construction and industry all over the world. In this paper, the behavior of strengthened timber beams made of beech wood (Fagus orientalis) were investigated experimentally. The composite timber beams were reinforced with flat, U-shaped, and L-shaped pultruded Glass Fiber Reinforced Polymer (GFRP) profiles. The GFRPs were attached to tensile or both tensile and compressive surfaces of beams. Altogether, 24 specimens, including 20 strengthened beams and 4 un-strengthened (control) beams, were tested under three-point bending test. Flexural behavior of specimens was evaluated through their load versus mid-span displacement curves, ultimate load... 

    Experimental investigation on the behavior of RC arches strengthened by GFRP composites

    , Article Construction and Building Materials ; Volume 235 , 28 February , 2020 Khaloo, A ; Moradi, H ; Kazemian, A ; Shekarchi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    An experimental investigation on the behavior of RC arches strengthened by glass fiber-reinforced polymer (GFRP) composites is presented. Twelve samples were tested in order to determine influence of arrangement and number of GFRP layers on RC arches having different steel reinforcement ratios. The arches were tested under centrally concentrated point load using displacement control condition. Load-deflection behavior, failure mode, GFRP debonding, angle between hinge formation and supports and crack propagation pattern are studied extensively. Based on test results, extrados strengthening is much more effective than intrados strengthening in increasing ultimate load carrying capacity which... 

    Effect of utilizing glass fiber-reinforced polymer on exural strengthening of rc arches

    , Article Scientia Iranica ; Volume 26, Issue 4A , 2019 , Pages 2299-2309 ; 10263098 (ISSN) Moradi, H ; Khaloo, A. R ; Shekarchi, M ; Kazemian, A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    An experimental study of the. flexural behavior of Reinforced-Concrete (RC) arches strengthened with Glass Fiber-Reinforced Polymer (GFRP) layers was performed. A total of 36 specimens including 3 un-strengthenod (control) and 33 strengthened RC arches were tested under centrally concentrated point load. The variables of this study were steel reinforcement ratio, number of GFRP layers, and location and arrangement of GFRP layers. Failure mode, load-displacement response of specimens, crack propagation patterns, and GFRP debonding were examined. The extrados strengthening method was shown to Ix1 more effective than the intrados strengthening one in improving the failure load and rigidity of...