Loading...
Search for: tribology
0.007 seconds
Total 158 records

    Electrodeposition of graphite-brass composite coatings and characterization of the tribological properties

    , Article Surface and Coatings Technology ; Volume 148, Issue 1 , 2001 , Pages 71-76 ; 02578972 (ISSN) Ghorbani, M ; Mazaheri, M ; Khangholi, K ; Kharazi, Y ; Sharif University of Technology
    2001
    Abstract
    Co-deposition of Cu(Zn) and graphite powders with size less than 10 μ was studied. Electrocomposite coatings were prepared by means of the conventional electrodeposition (CECD) and the sediment co-deposition (SCD) techniques. Brass electroplating cyanide bath has been selected out of electrodeposition brass. The effect of parameters such as rate of agitation and current density on the composition of electrodeposition brass and also the effect of the concentration of graphite particles in brass bath, air agitation rate on graphite incorporation within brass matrix and deposition efficiency were studied. The wear and friction properties of G-Cu(Zn) composite coatings containing different... 

    Improving tribological behavior of friction stir processed A413/SiCp surface composite using MoS2 lubricant particles

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 27, Issue 2 , 2017 , Pages 298-304 ; 10036326 (ISSN) Janbozorgi, M ; Shamanian, M ; Sadeghian, M ; Sepehrinia, P ; Sharif University of Technology
    Nonferrous Metals Society of China  2017
    Abstract
    The effect of MoS2 lubricant particles on the microstructure, microhardness and tribological behavior of A413/SiCp surface composite, fabricated via friction stir processing (FSP), was studied. For this purpose, the FSP was carried out with tool rotational speed of 1600 r/min, tool travel speed of 25 mm/min and tool tilt angle of 3° through only a “single pass”. The optical and scanning electron microscopies, microhardness and reciprocating wear tests were used to characterize the samples. The results showed that the addition of MoS2 lubricant particles to A413/SiCp surface composite leads to the decrease of friction coefficient and mass loss. In fact, the generation of mechanically mixed... 

    Erratum: Effects of crimping on mechanical performance of nitinol stent designed for femoral artery: Finite element analysis

    , Article Journal of Materials Engineering and Performance ; Vol. 23, issue. 4 , 2014 , pp. 1511- ; ISSN: 1059-9495 Nematzadeh, F ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    [No abstract available]  

    Hardness, wear and friction characteristics of nanostructured Cu-SiC nanocomposites fabricated by powder metallurgy route

    , Article Materials Today Communications ; Volume 18 , 2019 , Pages 25-31 ; 23524928 (ISSN) Akbarpour, M. R ; Najafi, M ; Alipour, S ; Kim, H.S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In the present study, hardness and tribological properties of nanostructured copper reinforced with SiC nanoparticles of various volume fractions (0, 2, 4, and 6 vol%) were investigated. The nanocomposites were fabricated by high-energy mechanical milling and hot pressing method. The Cu-SiC nanocomposites showed enhanced hardness and wear resistance against WC counterface. The hardness and wear resistance of the nanocomposite increased with increasing the amount of SiC nanoparticles up to 2 vol% in the matrix, but they decreased at higher percentages of SiC (4 and 6 vol%). Flake formation-spalling and abrasion were identified as the predominant wear mechanisms. It was found that reducing the... 

    The role of powder preparation route on physical and mechanical properties of Cu-rGO bulk nanocomposites

    , Article Materials Today Communications ; Volume 28 , 2021 ; 23524928 (ISSN) Fahimi, N ; Abachi, P ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    To study the effect of the production method on physical and mechanical properties of Cu-rGO nanocomposites, nanocomposite powder samples with rGO content of 0.25–1 wt.% were prepared via combined routes of molecular-level mixing (MLM) and powder metallurgy (PM). Spark plasma sintering (SPS) was applied to consolidate nanocomposite powders with better control on the grain size. According to the specific electrical resistivity measurements, microhardness, and pin-on-disk wear tests, the sample with 0.5 wt.% rGO comprised the best overall properties. For assessment, samples containing 0.5 wt.% rGO were also produced via PM and MLM routes, separately. The physical and mechanical properties of... 

    Effect of alumina nanoparticle on the tribological performance of automotive brake friction materials

    , Article Journal of Reinforced Plastics and Composites ; Vol. 33, issue. 2 , October , 2014 , pp. 166-178 ; ISSN: 07316844 Etemadi, H ; Shojaei, A ; Jahanmard, P ; Sharif University of Technology
    Abstract
    Brake friction materials filled with nanoalumina were produced by both conventional and solvent-assisted mixing methods. It was shown that nanoalumina loading led to the reduction of friction coefficient and improvement in mechanical, wear and thermal behaviors. Such behavior was attributed to the role of nanoalumina in producing stable friction layer and easy conduction path in matrix. It was postulated that nanoalumina is able to attach on the surface of microalumina facilitating the rolling of microalumina at interface. Solution-processed samples exhibited lower improvement in tribological and mechanical properties compared to the conventional mixing due to the limited interaction between... 

    Effect of sintering temperature on tribological behavior of Ce-TZP/Al2O3-aluminum nanocomposite

    , Article Journal of Composite Materials ; Volume 49, Issue 28 , December , 2015 , Pages 3507-3514 ; 00219983 (ISSN) Bahrami, A ; Soltani, N ; Pech Canul, M. I ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    10Ce-TZP/Al2O3 nanoparticles as reinforcement can be a good substitute in aluminum matrix composites prepared through powder metallurgy. In this work, the effects of sintering temperature on the hardness, friction, and wear characteristics of Al-10Ce-TZP/Al2O3 composites have been investigated. Ce-TZP/Al2O3 nanocomposites were synthesized by the aqueous combustion method. About 7 wt% 10Ce-TZP/Al2O3-aluminum composites in the form of cylindrical samples were prepared at the sintering temperatures of 400°C, 450°C, and 500°C under an applied pressure of 600 MPa for 60 min. The experimental results show that the distribution of Ce-TZP/Al2O3 nanocomposite into the metal matrix is homogenous and... 

    Fabrication of Ni -P -MoS2 Composite Coating by Electroless Deposition and Evaluation of Its Tribological Properties

    , M.Sc. Thesis Sharif University of Technology Majidian, Maryam (Author) ; Ghorbani, Mohammad (Supervisor) ; Afshar, Abdollah (Supervisor)
    Abstract
    Adding solid lubricant particles such as PTFE, Graphite and MoS2, has major influence on electroless composite nickel coatings in order to make low friction surfaces. Among these lubricants, MoS2 has attracted great attention due to its highest stability under wearing condition. In this work Ni-P-MoS2 composite coatings using MoS2 nano-particles have been made and in the next step, we evaluated tribological properties of these coatings. For exploring these coatings different experiments were utilized, like Scanning Electron Microscope study (SEM), chemical composition analysis exploiting AAS and XRF method, and thickness measurements. Two kinds of surfactants, CTAB and PVP, have been applied... 

    Pulse Electrodeposition of Ni-ZrO2-MoS2 Composite Coatings and Its Tribological Properties

    , M.Sc. Thesis Sharif University of Technology Rajabi Khosh Andam, Mohsen (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    In this study solid lubricants MoS2 nanoparticles with average size 50 nm and hard ZrO2 nanoparticles with average size 51 nm were used in watts bath and Ni/ZrO2-MoS2 composite coatings were prepared by pulse plating technique. Effect of current density, frequency, duty cycle, surfactant type and concentration of particles in the electrolyte on the amount of particles in the coatings were investigated and optimum conditions were determined to create composite coatings. Scanning Electron Microscopy (SEM) and x-ray diffraction (XRD) analysis were performed to study the morphology, structure, chemical composition of coatings. Corrosion testing of coatings by potentiodynamic polarization in... 

    Electroplating of Bronze-Graphite-SiC Composite Coating

    , M.Sc. Thesis Sharif University of Technology Asnavandi, Majid (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Composite coatings including self-lubricant particles such as graphite, MoS2, Al2O3 and SiC are extensively used to decrease the coefficient of friction of tribo-surfaces. Adding lubricant particles to an appropriate metallic matrix like copper, nickel, lead and their alloys is a suitable option in severe condition –for instance high temperature and low pressure- which liquid lubricants will be failed. Bronze can give various properties such as wear resistance, corrosion and oxidation protection, However cyanide solutions for electroplating process have environmentally limited for plating of Cu-Sn. In this research, a chloride electrolyte for bronze electroplating was developed and effect of... 

    Preparation and Characterization of Morphology and Mechanical Properties of PA6/Nanodiamond Composites

    , M.Sc. Thesis Sharif University of Technology Karami, Pooria (Author) ; Shojaei, Akbar (Supervisor)
    Abstract
    Polyamide or Nylon, due to its remarkable mechanical and tribological properties, has many engineering applications. Hence, improving the properties can develop the polyamide applications. In this study, Polyamide 6 (PA6) has been used as matrix with nanodiamond (ND) reinforcement. Spherical shape, chemically active surface as well as remarkable mechanical properties make nanodiamond an ideal candidate for improving polymers properties. Poor dispersion and agglomeration are present however major problems in achieving improved properties in nanocomposites. To deal with this problem, nanodiamonds were surface modified using Ethylenediamine (EDA) and Hexamethylenediamine (HMD). Nanocomposite... 

    Tribological characteristics of rubber-based friction materials

    , Article Tribology Letters ; Volume 41, Issue 2 , October , 2011 , Pages 325-336 ; 10238883 (ISSN) Arjmand, M ; Shojaei, A ; Sharif University of Technology
    2011
    Abstract
    This article deals with the rubber-based friction materials (RBFMs) which can be used in brake system. The physico-mechanical and tribological properties of a series of fiber filled RBFMs containing steel wool and aramid pulp at different concentrations along with a fiber-free reference material were characterized. Rubber-glass transition induced at higher sliding velocities was identified based on the friction fade behavior of the RBFMs. The rubber-glass transition which is inherently originated by viscoelastic response of polymeric binder was found to be influential on the tribological properties of the RBFMs. It was revealed that steel wool increased coefficient of friction (COF) and... 

    An enriched finite element algorithm for numerical computation of contact friction problems

    , Article International Journal of Mechanical Sciences ; Volume 49, Issue 2 , 2007 , Pages 183-199 ; 00207403 (ISSN) Khoei, A. R ; Nikbakht, M ; Sharif University of Technology
    2007
    Abstract
    In this paper, the extended finite element method (XFEM) is employed to model the presence of discontinuities caused by frictional contact. The method is used in modeling strong discontinuity within a standard finite element framework. In extended finite element method (XFEM) technique, the special functions are included in standard FEM to simulate discontinuity without considering the boundary conditions in meshing the domain. In this study, the classical finite element approximation is enriched by applying additional terms to simulate the frictional behavior of contact between two bodies. These terms, which are included for enrichment of nodal displacements, depend on the contact condition... 

    Tribological characterization of electroless Ni-10% P coatings at elevated test temperature under dry conditions

    , Article International Journal of Advanced Manufacturing Technology ; Volume 62, Issue 9-12 , October , 2012 , Pages 1063-1070 ; 02683768 (ISSN) Masoumi, F ; Ghasemi, H. R ; Ziaei, A. A ; Shahriari, D ; Sharif University of Technology
    Springer  2012
    Abstract
    An experimental study of wear characteristics of electroless Ni-10% P coating sliding against hard AISI 52100 steel pin is investigated. Experiments are carried out at room and 550°C temperatures. Heat treatment effects on tribological behavior of this coating are studied. The wear surface and the microstructure of the coatings are analyzed using optical microscopy, scanning electron microscopy, energy dispersion analysis X-ray, and microhardness testing equipment. It is observed that the forming of continuous oxide film on contacting surfaces of pin and disk improves wear resistance and decreases friction coefficient of the Ni-10% P coating. The results indicate that the wear resistance of... 

    Tribological characteristics of self-lubricating nanostructured aluminum reinforced with multi-wall CNTs processed by flake powder metallurgy and hot pressing method

    , Article Diamond and Related Materials ; Volume 90 , 2018 , Pages 93-100 ; 09259635 (ISSN) Akbarpour, M. R ; Alipour, S ; Najafi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Ultrafine-grained Al-CNT (2 and 4 vol%) composites were successfully fabricated using the flake powder metallurgy and hot pressing route, and the microstructure and tribological properties of the produced composites were studied. The results showed that the coefficient of friction and the wear rate of Al decrease with the addition of the CNT reinforcement. A carbon-rich film formed on the worn surfaces during wear test, which prevented the Al oxidation and yielded the self-lubricating effect for the composites. This improvement in the wear behavior of the composites can be attributed to the simultaneous effects of the ultrafine-grained matrix and strengthening and self-lubricating properties... 

    Frictional behavior of resin-based brake composites: Effect of carbon fibre reinforcement

    , Article Wear ; Volume 420-421 , 2019 , Pages 108-115 ; 00431648 (ISSN) Ahmadijokani, F ; Alaei, Y ; Shojaei, A ; Arjmand, M ; Yan, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    To investigate the effect of short carbon fibre on the tribological behavior of phenolic resin-based friction materials, a reference friction composite holding various ingredients without short carbon fibre, and three friction composites holding 1, 2 and 4 vol% carbon fibre were formulated. The dynamic-mechanical and thermogravimetric analyses showed the increase of storage modulus and reduction of thermal stability, respectively, with incorporation of carbon fibre into the brake composites. The tribological characterizations revealed that the coefficient of friction (COF) and specific wear rate of the friction composites dropped with addition of carbon fibre into the composites. Carbon... 

    Effect of exfoliated molybdenum disulfide oxide on friction and wear properties of ultra high molecular weight polyethylene

    , Article Polymers for Advanced Technologies ; Volume 29, Issue 12 , 2018 , Pages 3085-3096 ; 10427147 (ISSN) Amini, M ; Ramazani S. A., A ; Afkhami Varjouy, A ; Faghihi, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    The aim of this work is to investigate the effect of molybdenum disulfide on tribological properties of Ultra-high-molecular-weight polyethylene (UHMWPE). UHMWPE/MoS2 nano-composites were prepared using in-situ polymerization and Ziegler-Natta catalytic system. Studies showed that, in order to obtain the optimum tribological properties, interlayer distance between nanosheets should be as high as possible. Therefore, the nanosheets were subjected to oxidation using the required oxidants followed by thermal shock and ultrasound. Fourier-transform infrared spectroscopy (FTIR) analysis was used to determine the formation of functional groups which indicate the formation of S═O bond in the... 

    Effects of APS Coating on Wear Characteristic of Internal Combustion Engine's Cylinder

    , M.Sc. Thesis Sharif University of Technology Ghorashi, Mir Siavash (Author) ; Farrahi, Gholamhossein (Supervisor) ; Yousefi, Reza (Supervisor)
    Abstract
    The quest for increasing the efficiency of internal combustion engines is going on since the invention of automobile in the world. Wear between cylinder and ring is one of the major parameters reducing the engine performance. So many parameters are affecting the wear losses. Temperature plays a key role on the severity of wear condition in internal combustion engines. In conventional cast iron cylinders, we are not able to increase the temperature from a defined level; one reason is that the wear rate on cylinder ring contact will increase excessively. One of the major benefits of using ceramic coating is their ability to withstand in higher temperatures, while having adequate hardness to... 

    Mechanical and microstructural characterization of A1-5083/St-12 lap joints made by friction stir welding

    , Article Procedia Engineering, 5 June 2011 through 9 June 2011 ; Volume 10 , June , 2011 , Pages 3297-3303 ; 18777058 (ISSN) Movahedi, M ; Kokabi, A. H ; Seyed Reihani, S. M ; Najafi, H ; Sharif University of Technology
    2011
    Abstract
    Al-5083 and St-12 alloys sheets were friction stir lap welded at various travel and rotation speeds of the welding tool. Microscopic examinations indicate that the joint strength is due to the macroscopic and microscopic mechanical lockings and also atomic diffusion. The reaction zone of the welded joints consists of mixed layers of ultra-fine grains and the intermetallic compounds. The microhardness and nano indentation results prove that the intermetallic phase layer is more brittle in comparison to base metals and ultra-fine grain region. The fracture surfaces are a combination of brittle and ductile fractures. The fracture loads show that the joint strength improves significantly by... 

    Laser-assisted friction stir processing of IN738LC nickel-based superalloy:stir processing of IN738LC nickel-based superalloy: Stir zone characteristics.tir zone characteristics

    , Article Science and Technology of Welding and Joining ; Volume 21, Issue 5 , 2016 , Pages 374-380 ; 13621718 (ISSN) Mousavizade, S. M ; Pouranvari, M ; Ghaini, F. M ; Fujii, H ; Chung, Y. D ; Sharif University of Technology
    Taylor and Francis Ltd 
    Abstract
    Friction stir processing (FSP) of high softening-temperature materials such as nickel-based superalloys is considered to be difficult. Laser heating of a localised area ahead of the FSP tool was used to provide sufficient plasticity during the FSP of IN738LC nickel-based superalloy. The stir zone (SZ) microstructure of the friction stir processed and laser-assisted friction stir processed were characterised. Laser-assisted friction stir processing (LAFSP) produced a defect-free pass, but FSP resulted in generation of a discontinuity in the SZ. Both lower volume fraction of partially dissolved γ′ precipitates and coarser grain structure of SZ in LAFSP led to more ductility of the SZ material...