Loading...
Search for: traveling-wave-resonator
0.009 seconds

    Rigorous derivation of temporal coupled mode theory expressions for travelling and standing wave resonators coupled to optical waveguides

    , Article 7th International Conference on Photonics, Optics and Laser Technology, PHOTOPTICS 2019, 25 February 2019 through 27 February 2019 ; 2019 , Pages 201-208 ; 9789897583643 (ISBN) Zarif, A ; Memarian, M ; Mehrany, K ; Ribeiro P ; Raposo M ; Andrews D ; Institute for Systems and Technologies of Information, Control and Communication (INSTICC) ; Sharif University of Technology
    SciTePress  2019
    Abstract
    Temporal coupled mode theory (CMT) has so far been applied phenomenologically in the analysis of optical cavity-waveguide structures, and relies on a priori knowledge of the to-be-excited resonator mode. Thus a rigorous derivation from Maxwell's equations, and without any prior knowledge of the resonator type is needed. In this paper we derive temporal CMT of optical cavities coupled to waveguides. Starting from Maxwell's equations and considering a proper expansion of the modes of the waveguide and resonator, and using mode orthogonality, the temporal CMT for this structure is obtained. We show that this formulation is general and can be applied to both traveling wave and standing wave type... 

    Rigorous derivation of temporal coupled mode theory expressions for travelling and standing wave resonators coupled to optical waveguides

    , Article 7th International Conference on Photonics, Optics and Laser Technology, PHOTOPTICS 2019, 25 February 2019 through 27 February 2019 ; 2019 , Pages 201-208 ; 9789897583643 (ISBN) Zarif, A ; Memarian, M ; Mehrany, K ; Sharif University of Technology
    SciTePress  2019
    Abstract
    Temporal coupled mode theory (CMT) has so far been applied phenomenologically in the analysis of optical cavity-waveguide structures, and relies on a priori knowledge of the to-be-excited resonator mode. Thus a rigorous derivation from Maxwell's equations, and without any prior knowledge of the resonator type is needed. In this paper we derive temporal CMT of optical cavities coupled to waveguides. Starting from Maxwell's equations and considering a proper expansion of the modes of the waveguide and resonator, and using mode orthogonality, the temporal CMT for this structure is obtained. We show that this formulation is general and can be applied to both traveling wave and standing wave type... 

    Non-Reciprocity in Transmission Line Resonator with Time Varying Boundary Condition

    , M.Sc. Thesis Sharif University of Technology Shams, Raheleh (Author) ; Mehrany, Khashayar (Supervisor) ; Memarian, Mohammad (Supervisor)
    Abstract
    Structures with time-varying electromagnetic properties can potentially yield non-reciprocity, amplification, harmonic generation, and other interesting wave propagation phenomena. To date, some studies have dealt with time-varying media and circuits, including time-varying optical ring resonators having degenerate travelling wave resonances. In time-varying ring resonators, the clockwise and counter clockwise resonances lose their degeneracy, and non-reciprocity is observed. One of the main challenges of such research is the need to induce time-variations in the entirety of the resonator or structure, which makes their implementation very limited or impossible in practice. The purpose of... 

    The Impact of Non-reciprocal One-way Propagation on the Coupling between Electromagnetic Resonators and Waveguides

    , M.Sc. Thesis Sharif University of Technology Zarif, Arezoo (Author) ; Mehrany, Khashayar (Supervisor) ; Rajaei, Behzad (Co-Advisor)
    Abstract
    Subwavelength localization of electromagnetic energy with intense local fields, also known as electromagnetic hotspots, has received significant attention over the past few decades. In most cases the hotspot is achieved through the resonant concentration of electromagnetic fields. One way recently considered to get hotspot is through reflection of electromagnetic waves in nonreciprocal one-way structures, in plasmonics and via magneto optic effect.However these hotspots are less confined compared to hotspots caused by resonances. So combining nonreciprocal structures with resonance can provide better hotspots.Our aim in this thesis is to study nonreciprocal resonant structures using coupled...