Loading...
Search for: transverse-directions
0.008 seconds

    Impact of phase transformation on mechanical properties anisotropy of commercially pure titanium

    , Article Materials and Design ; Volume 37 , 2012 , Pages 223-227 ; 02641275 (ISSN) Nasiri Abarbekoh, H ; Ekrami, A ; Ziaei Moayyed, A. A ; Sharif University of Technology
    Abstract
    Effects of microstructure and texture, before and after phase transformation, on the anisotropy of the mechanical properties and fracture behaviors of commercially pure titanium were studied. Before phase transformation, due to the split distribution of basal texture the activation of different deformation systems led to mechanical properties anisotropy. Although the fracture mechanism in both specimens was voids nucleation, growth and coalescence, the shape, size and distribution of dimples were affected by active deformation systems. However, after phase transformation, basal plains in most grains were aligned with the transverse direction. This texture component led to the activation and... 

    Microstructure and mechanical property change during FSW and GTAW of Al6061 alloy

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 44, Issue 5 , 2013 , Pages 2187-2195 ; 10735623 (ISSN) Fahimpour, V ; Sadrnezhaad, S. K ; Karimzadeh, F ; Sharif University of Technology
    2013
    Abstract
    The variation of morphology and mechanical properties of Al6061 automotive aluminum alloy due to friction stir welding (FSW) and gas tungsten arc welding (GTAW) was investigated by optical metallography, scanning electron microscopy, microhardness measurement, X-ray diffraction, tensile testing, and fractography. The center-line dendrite emergence and microhardness reduction in the heat-affected zone were observed in the GTAW process. Although similar microhardness reduction with respect to the base metal was observed in the FSW samples, higher HVs were obtained for the FSW rather than the GTAW process at almost all heat-affected locations. Ultimate tensile strengths of the FSW and the GTAW... 

    A transmission line model for extraction of defect modes in two-dimensional photonic crystals

    , Article 2010 International Conference on Photonics, ICP2010, 5 July 2010 through 7 July 2010 ; July , 2010 ; 9781424471874 (ISBN) Khavasi, A ; Habibi, N ; Hosseinnia, A. H ; Mehrany, K ; Sharif University of Technology
    2010
    Abstract
    A transmission line model, based on the transverse resonance technique, is here introduced to extract a good approximation of guided defect modes in two dimensional photonic crystals. The proposed model simulates the electromagnetic field behavior in the transverse direction. Applying the resonance condition to the proposed circuit model renders a simple and elegant dispersion relation for defect modes in the structure. The obtained results are verified by being compared against numerical results extracted by using rigorous methods  

    Warm relativistic fluid description of the laser wake field accelerator

    , Article Physics of Plasmas ; Volume 16, Issue 2 , 2009 ; 1070664X (ISSN) Yazdanpanah, J ; Anvari, A ; Samimi, J ; Sharif University of Technology
    2009
    Abstract
    A warm relativistic ideal fluid theory is proposed to study the dynamics of laser-induced high amplitude longitudinal waves in rarefied plasmas. It is demonstrated that fluid equations may be closed using an adiabatic approximation in the local rest frame of the plasma fluid. It is shown that considering three-dimensional thermal fluctuations of plasma for an interacting laser pulse that is invariant in transverse directions, considerably changes the features of describing fluid equations compared to that of previously considered one-dimensional thermal-fluctuations models. For a given shape of laser pulse these equations are solved numerically and their results are compared with those... 

    Vibration control of beams on elastic foundation under a moving vehicle and random lateral excitations

    , Article Journal of Sound and Vibration ; Volume 331, Issue 6 , March , 2012 , Pages 1217-1232 ; 0022460X (ISSN) Zarfam, R ; Khaloo, A. R ; Sharif University of Technology
    2012
    Abstract
    The formulation of three-dimensional dynamic behavior of a Beam On Elastic Foundation (BOEF) under moving loads and a moving mass is considered. The weight of the vehicle is modeled as a moving point load, however the effect of the lateral excitation is considered by modeling: (case 1) a lateral moving load with random intensity for wind excitation and (case 2) a moving mass just in lateral direction of the beam for earthquake excitation. A Dirac-delta function is used to describe the position of the moving load and the moving mass along the beam. The beam foundations are considered as elastic Winkler-type in two perpendicular transverse directions. This model is proposed to investigate the... 

    Computational modeling of the transverse-isotropic elastic properties of single-walled carbon nanotubes

    , Article Computational Materials Science ; Volume 49, Issue 3 , 2010 , Pages 544-551 ; 09270256 (ISSN) Montazeri, A ; Sadeghi, M ; Naghdabadi, R ; Rafii-Tabar, H ; Sharif University of Technology
    2010
    Abstract
    Various experimental and theoretical investigations have been carried out to determine the elastic properties of nanotubes in the axial direction. Their behavior in transverse directions, however, has not been well studied. In this paper, a combination of molecular dynamics (MD) and continuum-based elasticity model is used to predict the transverse-isotropic elastic properties of single-walled carbon nanotubes (SWCNTs). From this modeling study, five independent elastic constants of an SWCNT in transverse directions are obtained by analyzing its deformations under four different loading conditions, namely, axial tension, torsion, uniform and non-uniform radial pressure. To find the elastic... 

    Development of an equation to predict radial modulus of elasticity for single-walled carbon nanotubes

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 222, Issue 6 , 2008 , Pages 1109-1115 ; 09544062 (ISSN) Sakhaee Pour, A ; Ahmadian, M. T ; Gerami, A ; Sharif University of Technology
    2008
    Abstract
    Finite element (FE) method is used to model radial deformation of single-walled carbon nanotube (SWCNT) under hydrostatic pressure. Elastic deformation of the nanostructure is simulated via elastic beams. Properties of the beam element are calculated by considering the stiffness of the covalent bonds between the carbon atoms in the hexagonal lattice. By applying the beam elements in a three-dimensional space, elastic properties of the SWCNT in transverse direction are obtained. In this regard, influences of diameter and tube wall thickness on the radial and circumferential elastic moduli of zigzag and armchair SWCNTs are considered. It is observed that there is a good agreement between the...