Loading...
Search for: tracking-performance
0.009 seconds

    Suppression of harmonic perturbations and bifurcation control in tracking objectives of a boiler-turbine unit in power grid

    , Article Nonlinear Dynamics ; Vol. 76, Issue. 3 , 2014 , pp. 1693-1709 ; ISSN: 0924090X Moradi, H ; Vossoughi, G ; Alasty, A ; Sharif University of Technology
    Abstract
    In the presence of harmonic disturbances, boiler-turbine units may demonstrate quasi-periodic behaviour due to the occurrence of various types of bifurcation. In this article, a nonlinear model of boiler-turbine unit is considered in which drum pressure, electric output and drum water level are controlled via manipulation of valve positions for fuel, steam and feed-water flow rates. For bifurcation control in tracking problem, two controllers are designed based on gain scheduling and feedback linearization (FBL). To investigate the efficiency of control strategies, three cases are considered for desired tracking objectives (a sequence of steps, ramps/steps, and a combination of them).... 

    Nonlinear bilateral adaptive impedance control with applications in telesurgery and telerehabilitation

    , Article Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME ; Volume 138, Issue 11 , 2016 ; 00220434 (ISSN) Sharifi, M ; Behzadipour, S ; Salarieh, H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    A bilateral nonlinear adaptive impedance controller is proposed for the control of multi-degrees-of-freedom (DOF) teleoperation systems. In this controller, instead of conventional position and/or force tracking, the impedance of the nonlinear teleoperation system is controlled. The controller provides asymptotic tracking of two impedance models in Cartesian coordinates for the master and slave robots. The proposed bilateral controller can be used in different medical applications, such as telesurgery and telerehabilitation, where the impedance of the robot in interaction with human subject is of great importance. The parameters of the two impedance models can be adjusted according to the... 

    Robust ground reaction force estimation and control of lower-limb prostheses: theory and simulation

    , Article IEEE Transactions on Systems, Man, and Cybernetics: Systems ; 2018 ; 21682216 (ISSN) Azimi, V ; Nguyen, T. T ; Sharifi, M ; Fakoorian, A ; Simon, D ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Ground reaction force (GRF) characteristics of amputee walking are important for the analysis of clinical gait data, and also to update model reference adaptive impedance (MRAI) controllers. GRF estimation is a better alternative than direct GRF measurement because of the disadvantages of load cells, such as high cost, integration difficulties due to weight and physical dimensions, the possibility of overload, and measurement noise. This paper presents four robust MRAI observer/controller combinations for GRF estimation-based control of a prosthesis and a legged robot model in the presence of parametric uncertainties and unmodeled dynamics, in which the robot model is employed to mimic... 

    Design of robust mixed fuzzy controller for gas metal arc welding process

    , Article 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006, Chicago, IL, 5 November 2006 through 10 November 2006 ; 2006 ; 10716947 (ISSN); 0791837904 (ISBN); 9780791837900 (ISBN) Eftekharian, A. A ; Sayyaadi, H ; Tadayon, M. A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2006
    Abstract
    Welding is an important manufacturing process that can be automated and optimized. In this paper we discuss the Gas Metal Arc Welding (GMAW) control and modeling problem. For modeling the process recently developed highly nonlinear fifth order mathematical model is used, for controlling the GMAW process we use a new Mixed Fuzzy Control (MFC) structure. In this work first a Traditional Fuzzy Controller (TFC) is designed from the viewpoint of a Single-Input Single-Output (SISO) system for controlling each state of GMAW process. Then, an appropriate coupling fuzzy controller is also designed according to the characteristics of gas metal arc welding process and incorporated into a TFC. We then... 

    Modeling and exponential reaching law sliding mode control of the lower limb in cycling

    , Article 8th International Conference on Control, Instrumentation and Automation, ICCIA 2022, 2 March 2022 through 3 March 2022 ; 2022 ; 9781665495691 (ISBN) Haghpanah, S. A ; Zolfaghari, S. E ; Mahzoon, M ; Eqra, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this study, a 3-DOF dynamic model is developed for the lower limb in the cycling activity using Lagrangian mechanics. An exponential reaching law sliding mode controller is then applied to the system in order to imitate the joints' real motion. The kinematic data of the joints are obtained through conducting experiments with an ergometer bike. Results show acceptable tracking performance for the control system. The study's outcome can be used by rehabilitation experts in their work. It is also useful for the engineers in designing rehabilitation devices or developing muscular models. © 2022 IEEE  

    Model reference adaptive impedance control of rehabilitation robots in operational space

    , Article Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 24 June 2012 through 27 June 2012 ; June , 2012 , Pages 1698-1703 ; 21551774 (ISSN) ; 9781457711992 (ISBN) Sharifi, M ; Behzadipour, S ; Vossoughi, G. R ; Sharif University of Technology
    2012
    Abstract
    A new nonlinear model reference adaptive impedance controller is presented for the control of robot manipulators with uncertainties in model parameters such as friction coefficients. This method provides asymptotic tracking of a reference impedance model for the robot end-effector in operational space which is more sensible for the patient compared to the joint space impedance used in previous works. The model uncertainties such as friction coefficients are compensated using an adaptation law. The asymptotic tracking of the reference impedance model is shown using a Lyapunov function. The tracking performance and friction compensation are also demonstrated through simulation on a... 

    Control of human spine in repetitive sagittal plane flexion and extension motion using a CPG based ANN approach

    , Article Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ; 2011 , Pages 8146-8149 ; 1557170X (ISSN) ; 9781424441211 (ISBN) Sedighi, A ; Sadati, N ; Nasseroleslami, B ; Vakilzadeh, M. K ; Narimani, R ; Parnianpour, M ; Sharif University of Technology
    Abstract
    The complexity associated with musculoskeletal modeling, simulation, and neural control of the human spine is a challenging problem in the field of biomechanics. This paper presents a novel method for simulation of a 3D trunk model under control of 48 muscle actuators. Central pattern generators (CPG) and artificial neural network (ANN) are used simultaneously to generate muscles activation patterns. The parameters of the ANN are updated based on a novel learning method used to address the kinetic redundancy due to presence of 48 muscles driving the trunk. We demonstrated the feasibility of the proposed method with numerical simulation of experiments involving rhythmic motion between upright... 

    Control tuning of a اeart motion tracking system in off-pump heart surgery

    , Article 5th RSI International Conference on Robotics and Mechatronics, IcRoM 2017, 25 October 2017 through 27 October 2017 ; 2018 , Pages 445-450 ; 9781538657034 (ISBN) Rahmati, Z ; Behzadipour, S ; Sharif University of Technology
    Abstract
    Design, implementation and experimental evaluation of a classic PID, and a modern Generalized Predictive Control (GPC) for an off-pump heart tracking system were carried out. Following the design and simulation analysis of the controllers, experimental evaluation was conducted on the slave robot of SINA tele-operational surgical system. Results revealed that considering the volatile high-frequency/speed pattern of heart motion, the agility of the controlled system is the most influential factor on its performance. With this in mind, unlike the Ziegler-Nichols-based tuned PID with emphasis on steady-state condition, the PID control with more transient behavior showed a superior performance.... 

    Impedance control of non-linear multi-DOF teleoperation systems with time delay: absolute stability

    , Article IET Control Theory and Applications ; Volume 12, Issue 12 , 2018 , Pages 1722-1729 ; 17518644 (ISSN) Sharifi, M ; Salarieh, H ; Behzadipour, S ; Tavakoli, M ; Sharif University of Technology
    Abstract
    A non-linear robust adaptive bilateral impedance controller is proposed to provide the absolute stability of multi-DOF teleoperation systems with communication delays, in addition to the force and position tracking performance. The proposed controller realises two desired (or reference) impedance models for the master and slave robots using a new non-linear robust version of the model reference adaptive control scheme. Using the absolute stability criterion, the robustness condition of the teleoperation system against communication delays is obtained, resulting in suitable adjustments of parameter values in the desired impedance models. In addition, using the Lyapunov stability theorem, the... 

    A unified acceptance test framework for power plant gas turbine control systems

    , Article ISA Transactions ; Volume 85 , February , 2018 , Pages 262-273 ; 00190578 (ISSN) Eslami, M ; Babazadeh, M ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2018
    Abstract
    Renovation and retrofit of gas turbine control systems yield significant economic savings, enhanced reliability, and improved performance. In recent years, the gas turbine industry is increasingly facing the need to well-established procedures for the acceptance tests of renovated control systems. This paper proposes a unified framework to evaluate the performance of renovated gas turbine control systems. Under a set of assumptions on the ambient and fuel conditions, a low-complexity modular model is presented and identified using optimization-oriented identification techniques. The accuracy of the proposed model is validated through experimental studies in full-load, min-load, and no-load... 

    Control tuning of a اeart motion tracking system in off-pump heart surgery

    , Article 5th RSI International Conference on Robotics and Mechatronics, IcRoM 2017, 25 October 2017 through 27 October 2017 ; 2018 , Pages 445-450 ; 9781538657034 (ISBN) Rahmati, Z ; Behzadipour, S ; Sharif University of Technology
    Elsevier  2018
    Abstract
    Design, implementation and experimental evaluation of a classic PID, and a modern Generalized Predictive Control (GPC) for an off-pump heart tracking system were carried out. Following the design and simulation analysis of the controllers, experimental evaluation was conducted on the slave robot of SINA tele-operational surgical system. Results revealed that considering the volatile high-frequency/speed pattern of heart motion, the agility of the controlled system is the most influential factor on its performance. With this in mind, unlike the Ziegler-Nichols-based tuned PID with emphasis on steady-state condition, the PID control with more transient behavior showed a superior performance.... 

    Autonomous unmanned helicopter landing system design for safe touchdown on 6DOF moving platform

    , Article 5th International Conference on Autonomic and Autonomous Systems, ICAS 2009, Valencia, 20 April 2009 through 25 April 2009 ; 2009 , Pages 245-250 ; 9780769535845 (ISBN) Esmailifar, S. M ; Saghafi, F ; Sharif University of Technology
    2009
    Abstract
    In this research, an adaptive control system is designed for a safe touchdown of an unmanned helicopter during its landing phase on a 6DOF moving platform. In this paper the landing phase is divided into the approach and touchdown stages. In the first stage, the helicopter tries to attenuate the initial position and direction errors and in the next stage, the platform's attitude is tracked for a safe touchdown. The hierarchical structure of the proposed control system includes supervisory and tracking levels. The supervisory level recognizes the landing stage and the tracking level controls and compensates the errors based on SDRE (State Dependent Riccati Equation) method. The robustness and... 

    A unified acceptance test framework for power plant gas turbine control systems

    , Article ISA Transactions ; Volume 85 , 2019 , Pages 262-273 ; 00190578 (ISSN) Eslami, M ; Babazadeh, M ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2019
    Abstract
    Renovation and retrofit of gas turbine control systems yield significant economic savings, enhanced reliability, and improved performance. In recent years, the gas turbine industry is increasingly facing the need to well-established procedures for the acceptance tests of renovated control systems. This paper proposes a unified framework to evaluate the performance of renovated gas turbine control systems. Under a set of assumptions on the ambient and fuel conditions, a low-complexity modular model is presented and identified using optimization-oriented identification techniques. The accuracy of the proposed model is validated through experimental studies in full-load, min-load, and no-load... 

    Particle filtering-based low-elevation target tracking with multipath interference over the ocean surface

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 56, Issue 4 , 2020 , Pages 3044-3054 Shi, X ; Taheri, A ; Cecen, T ; Celik, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    As radar signals propagate above the ocean surface to determine the trajectory of a target, the signals that are reflected directly from the target arrive at the receiver along with indirect signals reflected from the ocean surface. These unwanted signals must be properly filtered; otherwise, their interference may mislead the signal receiver and significantly degrade the tracking performance of the radar. To this end, we propose a low-elevation target tracking mechanism considering the specular and diffuse reflection effects of multipath propagation over the ocean surface simultaneously. The proposed mechanism consists of a state-space model and a particle filtering algorithm and promises...