Loading...
Search for: toughened-epoxies
0.006 seconds

    Role of particle cavitation in rubber-toughened epoxies: II. Inter-particle distance

    , Article Polymer ; Volume 41, Issue 1 , 2000 , Pages 269-276 ; 00323861 (ISSN) Bagheri, R ; Pearson, R. A ; Sharif University of Technology
    2000
    Abstract
    Two types of conventional rubber modifiers and a series of hollow plastic micro-spheres were employed as toughening agents in a diglycidyl ether of bisphenol A (DGEBA) epoxy in Part I (Bagheri R, Pearson RA. Polymer 1996;37:4529) of this study. It was found that the rubber modifiers with different cavitation resistance and hollow plastic micro-spheres which act as pre-existing microvoids toughen epoxies in the same manner. The current study is composed to further examine the previous results in terms of the role inter-particle distance in rubber/microvoid toughened epoxies. It is shown that the fracture toughness in toughened blends goes through a ductile-to-brittle transition with... 

    Study of synergistic toughening in a bimodal epoxy nanocomposite

    , Article Journal of Reinforced Plastics and Composites ; Volume 34, Issue 4 , February , 2015 , Pages 281-292 ; 07316844 (ISSN) Keivani, M ; Khamesinia, A ; Bagheri, R ; Kouchakzadeh, M. A ; Abadyan, M ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    Toughening of epoxy with different types of modifiers produces a bimodal blend that might show better fracture resistance in comparison with single-modified ones. In this research, bimodal epoxy formulations including mixtures of glass microsphere and silica nanoparticles are explored for possible synergistic toughening. The influence of composition on the glass transition temperature (Tg), tensile characteristics, and fracture toughness (KIC) is investigated. Interestingly, a synergism in fracture toughness is observed when mixtures of modifiers were incorporated. For the fixed overall modifier content, KIC is higher when the volume fraction of glass microsphere is lesser than the volume...