Loading...
Search for: tin
0.009 seconds
Total 130 records

    Synthesis of tin oxide nanoparticles in order to study its properties

    , Article Digest Journal of Nanomaterials and Biostructures ; Volume 16, Issue 1 , 2021 , Pages 41-49 ; 18423582 (ISSN) Shahzad, N ; Ali, N ; Shahid, A ; Khan, S ; Alrobei, H ; Sharif University of Technology
    S.C. Virtual Company of Phisics S.R.L  2021
    Abstract
    Pure tin oxide nanoparticles ware synthesized via Co-precipitation method. The as-synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD) and diffuse reflectance spectroscopy (DRS). X-ray diffraction shows that tetrahedral shaped nanoparticles of crystallite size 47.35nm were prepared successfully. The crystallinity was established due the reduction in distortion ratio and dislocation density. The value of strain showed that the nanoparticles fabricated were of high stability. The direct and indirect optical band gap of as-synthesized SnO2 nanoparticles were determined from the reflectance... 

    Deposition of Nanostructure Antimony Doped Tin Oxide (ATO) on Glass By Sol-Gel

    , M.Sc. Thesis Sharif University of Technology Royaei, Neda (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Antimony Doped tin oxide as a conductive film has found a wide range of applications and sol-gel method has so advantageous with respect to another methods for preparing ATO thin films. In this study, ATO thin film has been synthesized using a solution containing metal salts of tin chloride and antimony chloride. The microstructure of the obtained films was studied by applying scanning electron microscopy (SEM) and X-ray diffraction patterns (XRD). In diffraction patterns of the acquired ATO layers which was deposited from a sol containing SnCl4.5H2O and SnCl2.2H2O with Sb concentration of 15%mol and layers which was deposited from a sol containing SnCl4.5H2O with Sb concentration of 15%mol... 

    Effect of alumina nanoparticles on the microstructure and mechanical durability of meltspun lead-free solders based on tin alloys

    , Article Journal of Alloys and Compounds ; Volume 688 , 2016 , Pages 143-155 ; 09258388 (ISSN) Mehrabi, K ; Khodabakhshi, F ; Zareh, E ; Shahbazkhan, A ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    As one of the key technologies for high performance electronic devices, composite solders have been recently developed to improve thermal and mechanical properties of solder joints. In this research, melt spinning was employed to fabricate a lead-free based nanocomposite solder for electronic application materials via introducing Ni-coated Al2O3 nanoparticles (0.1 wt%) into a Sn-Ag-Cu ternary eutectic alloy during rapid solidification. These surface-modified nanoparticles were synthesized by an in situ chemical reduction method. The effect of rapid solidification on the distribution of reinforcing nanoparticles, microstructural evolution, and solderability of the tin alloy were studied.... 

    SnCl4/SiO2: an efficient heterogeneous alternative for one-pot synthesis of β-acetamidoketones

    , Article Journal of the Chinese Chemical Society ; Volume 56, Issue 2 , 2009 , Pages 386-391 ; 00094536 (ISSN) Mirjalili, B. B. F ; Mahmoodi Hashemi, M ; Sadeghi, B ; Emtiazi, H ; Sharif University of Technology
    2009
    Abstract
    Enolizable ketones have been reacted in a one-pot method with aromatic aldehydes, acetyl chloride and acetonitrile at room temperature in the presence of SnCl4/SiO2 to furnish the corresponding β-acetamidoketones in improved yields. Acetylation of an aromatic hydroxyl group was observed while using 4-hydroxybenzaldehyde or vanillin and the corresponding β-acetamidoketones were isolated in an excellent yield  

    Optimization of sputtering parameters for the deposition of low resistivity indium tin oxide thin films

    , Article Acta Metallurgica Sinica (English Letters) ; Vol. 27, issue. 2 , Apr , 2014 , p. 324-330 Yasrebi, N ; Bagheri, B ; Yazdanfar, P ; Rashidian, B ; Sasanpour, P ; Sharif University of Technology
    Abstract
    Indium tin oxide (ITO) thin films have been deposited using RF sputtering technique at different pressures, RF powers, and substrate temperatures. Variations in surface morphology, optical properties, and film resistances were measured and analyzed. It is shown that a very low value of sheet resistance (1.96 ω/sq.) can be achieved with suitable arrangement of the deposition experiments. First, at constant RF power, deposition at different pressure values is done, and the condition for achieving minimum sheet resistance (26.43 ω/sq.) is found. In the next step, different values of RF powers are tried, while keeping the pressure fixed on the previously found minimum point (1-2 Pa). Finally,... 

    The ITO-capped WO3 nanowires biosensor based on field-effect transistor in label-free protein sensing

    , Article Applied Physics A: Materials Science and Processing ; Volume 123, Issue 5 , 2017 ; 09478396 (ISSN) Shariati, M ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    The fabrication of ITO-capped WO3 nanowires associated with their bio-sensing properties in field-effect transistor diagnostics basis as a biosensor has been reported. The bio-sensing property for manipulated nanowires elucidated that the grown nanostructures were very sensitive to protein. The ITO-capped WO3 nanowires biosensor showed an intensive bio-sensing activity against reliable protein. Polylysine strongly charged bio-molecule was applied as model system to demonstrate the implementation of materialized biosensor. The employed sensing mechanism was ‘label-free’ and depended on bio-molecule’s intrinsic charge. For nanowires synthesis, the vapor–liquid–solid mechanism was used.... 

    Metallography and microstructure interpretation of some archaeological tin bronze vessels from Iran

    , Article Materials Characterization ; Vol. 97 , November , 2014 , pp. 74-82 Oudbashi, O ; Davami, P ; Sharif University of Technology
    Abstract
    Archaeological excavations in western Iran have recently revealed a significant Luristan Bronzes collection from Sangtarashan archaeological site. The site and its bronze collection are dated to Iron Age II/III of western Iran (10th-7th century BC) according to archaeological research. Alloy composition, microstructure and manufacturing technique of some sheet metal vessels are determined to reveal metallurgical processes in western Iran in the first millennium BC. Experimental analyses were carried out using Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy and Optical Microscopy/Metallography methods. The results allowed reconstructing the manufacturing process of bronze... 

    Effect of content silver and heat treatment temperature on morphological, optical, and electrical properties of ITO films by sol-gel technique

    , Article Journal of Nanoparticle Research ; Volume 16, Issue 9 , September , 2014 ; ISSN: 13880764 Mirzaee, M ; Dolati, A ; Sharif University of Technology
    Abstract
    Silver-doped indium tin oxide thin films were synthesized using sol-gel dip-coating technique. The influence of different silver-dopant contents and annealing temperature on the electrical, optical, structural, and morphological properties of the films were characterized by means of four-point probe, UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscope (XPS). XRD analysis confirmed the formation of cubic bixbyte structure of In2O3with silver nanoparticles annealed at 350 °C. XPS analysis showed that divalent tin transformed to tetravalent tin through oxidization, and silver nanoparticles embedded into ITO... 

    Effects of tin valence on microstructure, optical, and electrical properties of ITO thin films prepared by sol–gel method

    , Article Journal of Sol-Gel Science and Technology ; Volume 75, Issue 3 , September , 2015 , Pages 582-592 ; 09280707 (ISSN) Mirzaee, M ; Dolati, A ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Abstract: This study aimed to understand the microstructural, optical, and electrical properties of tin-doped indium oxide (ITO) prepared with tetravalent and divalent tin salts. The influence of tin valence on the electrical, optical, structural, and morphological properties of the films were characterized by the mean of four-point probe, thermogravimetric analysis, differential thermal analysis (DTA), UV–Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscope. XRD results revealed formation of cubic bixbyite structure of In2O3 with a small shift in major peak position toward lower angles with... 

    Novel nanocomposite polyethersulfone- antimony tin oxide membrane with enhanced thermal, electrical and antifouling properties

    , Article Polymer ; Volume 163 , 2019 , Pages 48-56 ; 00323861 (ISSN) Khorshidi, B ; Hosseini, S. A ; Ma, G ; McGregor, M ; Sadrzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Application of organic−inorganic nanocomposite membranes for water treatment is exceptionally growing owing to their tunable functionalities in addition to their enhanced permeation and antifouling propensity. In the present work, novel nanocomposite polyethersulfone (PES) membrane was synthesized using antimony-doped tin oxide (ATO) nanoparticles (NPs) via phase separation technique. It was found that the modified PES-ATO nanocomposite membranes exhibited significantly higher fouling resistance and larger permeate flux recovery ratio when tested with oil sands produced water than unmodified PES membranes. Furthermore, the PES-ATO membranes provided 40% more organic matter removal compared... 

    Facile and ultra-sensitive voltammetric electrodetection of Hg2+in aqueous media using electrodeposited AuPtNPs/ITO

    , Article Analytical Methods ; Volume 13, Issue 24 , 2021 , Pages 2688-2700 ; 17599660 (ISSN) Bagheri Hariri, M ; Siavash Moakhar, R ; Sharifi Abdar, P ; Zargarnezhad, H ; Shone, M ; Rahmani, A. R ; Moradi, N ; Niksefat, V ; Shayar Bahadori, K ; Dolati, A ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    In this study, we have investigated the use of electrodeposited Au-Pt nanoparticles (AuPtNPs) on indium tin oxide (ITO) for the detection of Hg2+ heavy ions in water samples. The mechanism of AuPtNP electrocrystallization on ITO glass in an aqueous solution containing 0.5 mM HAuCl4 + 0.5 mM H2PtCl6 is described for the first time. The nucleation mechanism of monometallic AuNPs on ITO was found to be progressive; however, a transition from progressive to instantaneous was observed for bimetallic AuPtNPs at elevated overpotentials. The modified ITOs were then assessed for the electrodetection of Hg2+ in aqueous media. It was shown by differential pulse voltammetry (DPV) that the sensitivity of... 

    Nanoparticle enhanced solders for increased solder reliability

    , Article Materials Research Society Symposium Proceedings, 28 November 2011 through 2 December 2011, Boston, MA ; Volume 1424 , 2012 , Pages 115-120 ; 02729172 (ISSN) ; 9781605114019 (ISBN) Mokhtari, O ; Roshanghias, A ; Ashayer, R ; Kotadia, H. R ; Khomamizadeh, F ; Kokabi, A.H ; Clode, M. P ; Miodownik, M ; Mannan, S. H ; Sharif University of Technology
    2012
    Abstract
    Due to environmental concerns traditional eutectic tin-lead solder is gradually being replaced in electronic assemblies by "lead-free" solders. During this transition, nanoparticle technology is also being investigated to see whether improvements in joint reliability for high temperature applications can be made. Nanoparticles can be used to harden the solder via Zener pinning of the grain boundaries and reduce fatigue failure. This paper explores the effects of adding Silica nanoparticles to SnAgCu solder, and how the mechanical properties induced in the solder vary with temperature. It is found that above 100°C the mechanical response and microstructure of the normal and nanoparticle... 

    Facile deposition of porous fluorine doped tin oxide by Dr. blade method for capacitive applications

    , Article Ceramics International ; Volume 47, Issue 4 , 2021 , Pages 5487-5494 ; 02728842 (ISSN) Asadzadeh, M ; Tajabadi, F ; Dastan, D ; Sangpour, P ; Shi, Z ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Three-dimensional macroporous fluorine-doped tin oxide (p-FTO) films were successfully deposited using commercial ink of FTO powder and SnCl2 salt via Dr. Blade method. Various features of p-FTO thin films were studied as a function of the ink composition and sintering temperature. The morphological studies corroborated formation of porous, uniform, and crack-free FTO films after annealing at 300 °C for 10 min in air. X-ray diffraction pattern demonstrated development of highly crystalline FTO films. The lowest sheet resistance of 47 Ω/□ was obtained for the p-FTO film with a thickness of 21 μm. The capacitance of thin p-FTO films was investigated using a three-electrode system and the... 

    Deep oxidative desulfurization via rGO-immobilized tin oxide nanocatalyst: Experimental and theoretical perspectives

    , Article Advanced Powder Technology ; Volume 33, Issue 3 , 2022 ; 09218831 (ISSN) Salmanzadeh Otaghsaraei, S ; Kazemeini, M ; Hasannia, S ; Ekramipooya, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this contribution, reduced grapheme oxides (rGO) with immobilized tin oxide (SnO2) nanocatalysts were synthesized via the Incipient Wetness Impregnation (IWI) method. To characterize the SnO2/rGO composites, several analyses including the; XRD, Raman, FTIR, ICP-OES, BET-BJH, XPS, TEM, and TPD were utilized. Then the effects of parameters including reaction time, total metal loading, and the initial sulfur concentration of model fuel in the dibenzothiophene (DBT) oxidation desulfurization process were evaluated. After determining the optimal conditions for the aforementioned parameters, the influences of 3 effective factors of the molar ratio of oxidant/substrate (O/S), the molar ratio of... 

    Synthesis and Microstructure of Multi Valent Heavily Doped TiO2 Ceramics

    , M.Sc. Thesis Sharif University of Technology Motahari, Majid (Author) ; Nemati, Ali (Supervisor)
    Abstract
    In this project, the nanostructured titanium oxide with heaily doping of oxides of cerium and tin was synthesized using the sol-gel process and its properties were studied. To synthesize TiO2, titanium tetraisopropoxide precursor was used. Cerium nitrate and aqueous tin chloride precursors were utilized for cerium and tin synthesis. Then, they were mixed with Titania precursor causing a severe doping. After that, a gel was produced and it was aged and eventually, it was dried and calcined. XRD and SEM were used to determine the phase and particle size SEM and XRD results showed that doping had great impact on TiO2 crystals. The approximate size of nanoparticles was calculated using... 

    Pulsed electrodeposition of gold nanoparticles on fluorine-doped tin oxide glass and absorption-based surface plasmon resonance evaluation

    , Article Journal of Nano Research ; Volume 33 , 2015 , Pages 11-26 ; 16625250 (ISSN) Vahdatkhah, P ; Sadrnezhaad, S. K ; Sharif University of Technology
    Trans Tech Publications Ltd  2015
    Abstract
    Synthesis and immobilization of Au nanoparticles (AuNPs) was performed on transparent fluorine-doped tin oxide (FTO) substrate by pulse electrodeposition method. The method was cost effective, simple and capable of producing nanoparticles strongly attached to the substrate. Effects of several influencing factors such as duty cycle, pulse frequency, current density, solution concentration, deposition period and annealing procedure on the optical properties of AuNPs-FTO electrode were investigated. AuNPs-FTO electrodes were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and UV-Vis absorption analysis. Controllability... 

    Wear and friction characteristics of electrodeposited graphite-bronze composite coatings

    , Article Surface and Coatings Technology ; Volume 190, Issue 1 , 2005 , Pages 32-38 ; 02578972 (ISSN) Ghorbani, M ; Mazaheri, M ; Afshar, A ; Sharif University of Technology
    2005
    Abstract
    The wear and friction properties of G-Cu (Sn) composite coatings containing different amounts of graphite particles were examined. The presence of graphite particles improved antifriction properties of composite coatings. The effects of graphite percent in composite coating, tin content of matrix, load, speed and distance on the coefficient of friction and wear resistance of bronze-graphite composite coatings were studied. The results of the present studies revealed that hardness, wear resistance, coefficient of friction are dependent on volume percentage of graphite in composite coating. It was shown that the composite coating containing approximately 5.4 (vol.%) graphite and matrix with... 

    Production of Cu-Sn-graphite-SiC composite coatings by electrodeposition

    , Article Surface and Coatings Technology ; Volume 216 , 2013 , Pages 207-214 ; 02578972 (ISSN) Asnavandi, M ; Ghorbani, M ; Kahram, M ; Sharif University of Technology
    2013
    Abstract
    Cu-Sn composites incorporated with graphite and/or SiC particles were produced by electrodeposition technique. The effect of particle concentration in the plating bath and current density on tin content and volume percentage of particles in the coatings has been investigated. Structure, morphology, micro hardness and wear properties of the coatings have been studied. The results showed that particles cause an increase of tin content in the plated Cu-Sn. Graphite and silicon carbide particles had different effects on coating hardness; 7.8. vol.% graphite decreased the hardness of Cu-Sn layer from 231. Hv to 172. Hv whereas, 5.1. vol.% SiC raised the hardness to 316. Hv. Moreover, friction... 

    Ultraviolet photodetectors based on ZnO sheets: The effect of sheet size on photoresponse properties

    , Article Applied Surface Science ; Volume 258, Issue 14 , 2012 , Pages 5405-5411 ; 01694332 (ISSN) Ghasempour Ardakani, A ; Pazoki, M ; Mahdavi, S. M ; Bahrampour, A. R ; Taghavinia, N ; Sharif University of Technology
    Abstract
    In this work, ultraviolet photodetectors based on electrodeposited ZnO sheet thin films were fabricated on a glass substrate. Before electrodeposition, a thin buffer layer of ZnO was deposited on the glass by pulsed laser deposition method. This layer not only acted as a nucleation site for ZnO sheet growth, but also made it possible to use cheap glass substrate instead of conventional fluorine-doped tin oxide (FTO) substrate. Our results showed that photoresponse properties of the photodetectors strongly depend on the sheet sizes. The smaller sheets exhibited enhanced photosensitivity, shortened fall times and decreased gain compared to larger ones. We showed that photodetectors based on... 

    Novel microwave-assisted synthesis of porous g-C3N4/SnO2 nanocomposite for solar water-splitting

    , Article Applied Surface Science ; Volume 440 , 15 May , 2018 , Pages 153-161 ; 01694332 (ISSN) Seza, A ; Soleimani, F ; Naseri, N ; Soltaninejad, M ; Montazeri, S.M ; Sadrnezhaad, S.K ; Mohammadi, M.R ; Moghadam, H.A ; Forouzandeh, M ; Amin, M.H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Highly porous nanocomposites of graphitic-carbon nitride and tin oxide (g-C3N4/SnO2) were prepared through simple pyrolysis of urea molecules under microwave irradiation. The initial amount of tin was varied in order to investigate the effect of SnO2 content on preparation and properties of the composites. The synthesized nanocomposites were well-characterized by XRD, FE-SEM, HR-TEM, BET, FTIR, XPS, DRS, and PL. A homogeneous distribution of SnO2 nanoparticles with the size of less than 10 nm on the porous C3N4 sheets could be obtained, suggesting that in-situ synthesis of SnO2 nanoparticles was responsible for the formation of g-C3N4. The process likely occurred by the aid of the large...