Loading...
Search for: timoshenko
0.006 seconds
Total 96 records

    Comment on "A micro scale Timoshenko beam model based on strain gradient elasticity theory

    , Article European Journal of Mechanics, A/Solids ; 2014 ; ISSN: 09977538 Nojoumian, M. A ; Salarieh, H ; Sharif University of Technology
    Abstract
    A micro scale Timoshenko beam was modeled with strain gradient theory in "A micro scale Timoshenko beam model based on strain gradient elasticity theory" by Wang et al., European Journal of Mechanics - A/Solids, vol. 29, pp. 591-599, 7//2010. Looking at the modeling of the beam, a mistake in deriving the effect of classical moment has occurred. The classical boundary conditions of a Timoshenko beam could not be derived going backward from the strain gradient Timoshenko beam theory which has been presented in aforementioned paper. In this comment, the contradiction has been shown and the correct form of the boundary conditions and final equations has been derived  

    Comment on “A micro scale Timoshenko beam model based on strain gradient elasticity theory”

    , Article European Journal of Mechanics, A/Solids ; Volume 60 , 2016 , Pages 361-362 ; 09977538 (ISSN) Nojoumian, M. A ; Salarieh, H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    A micro scale Timoshenko beam was modeled with strain gradient theory in “A micro scale Timoshenko beam model based on strain gradient elasticity theory” by Wang et al., European Journal of Mechanics – A/Solids, vol. 29, pp. 591–599, 7//2010. Looking at the modeling of the beam, a mistake in deriving the effect of classical moment has occurred. The classical boundary conditions of a Timoshenko beam could not be derived going backward from the strain gradient Timoshenko beam theory which has been presented in aforementioned paper. In this comment, the contradiction has been shown and the correct form of the boundary conditions and final equations has been derived  

    Dynamics of Timoshenko beams on Pasternak foundation under moving load

    , Article Mechanics Research Communications ; Volume 31, Issue 6 , 2004 , Pages 713-723 ; 00936413 (ISSN) Kargarnovin, M. H ; Younesian, D ; Sharif University of Technology
    2004
    Abstract
    The response of a Timoshenko beam with uniform cross-section and infinite length supported by a generalized Pasternak-type viscoelastic foundation subjected to an arbitrary-distributed harmonic moving load is studied in this paper. Governing equations are solved using complex Fourier transformation in conjunction with the residue and convolution integral theorems. The solution is directed to compute the deflection, bending moment and shear force distribution along the beam length. A parametric study is carried out for an elliptical load distribution and influences of the load speed and frequency on the beam responses are investigated. © 2004 Elsevier Ltd. All rights reserved  

    Investigation of Stabilization of Euler-Bernoulli and Timoshenko Beams

    , M.Sc. Thesis Sharif University of Technology Jalili Rahmati, Alireza (Author) ; Hesaraki, Mahmoud (Supervisor)
    Abstract
    In this study, Euler-Bernoulli and Timoshenko beams with delayed boundary control are investigated. Deriving governing dynamic feedback control equations, exponential stability of these beams are obtained under more generalized conditions. For this purpose, time delay of system is omitted using tools in control engineering; then, an appropriate control approachis is found for this modified system.In the next step,closed loop system is extracted, which demonstrate that system is stable exponentially. This stability which is acquired for closed loop systems is also valid for primary system  

    Continuous model for flexural vibration analysis of a Timoshenko cracked beam

    , Article Archives of Mechanics ; Volume 65, Issue 4 , 2013 , Pages 265-288 ; 03732029 (ISSN) Heydari, M ; Ebrahimi, A ; Behzad, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, a continuous model for vibration analysis of a beam with an open edge crack including the effects of shear deformation and rotary inertia is presented. A displacement field is suggested for the beam and the strain, and stress fields are calculated. The governing equation of motion for the beam has been obtained using Hamilton's principle. The equation of motion is solved with a modified Galerkin method and the natural frequencies and mode shapes are obtained. A good agreement has been observed between the results of this research and the results of previous work done in this fiels. The results are also compared to results of a similar model with Euler-Bernoulli assumptions to... 

    Dynamic analysis of composite beam subjected to harmonic moving load based on the third-order shear deformation theory

    , Article Frontiers of Mechanical Engineering ; Volume 6, Issue 4 , December , 2011 , Pages 409-418 ; 20950233 (ISSN) Rezvanil, M. J ; Kargarnovin, M. H ; Younesian, D ; Sharif University of Technology
    Abstract
    The response of an infinite Timoshenko beam subjected to a harmonic moving load based on the thirdorder shear deformation theory (TSDT) is studied. The beam is made of laminated composite, and located on a Pasternak viscoelastic foundation. By using the principle of total minimum potential energy, the governing partial differential equations of motion are obtained. The solution is directed to compute the deflection and bending moment distribution along the length of the beam. Also, the effects of two types of composite materials, stiffness and shear layer viscosity coefficients of foundation, velocity and frequency of the moving load over the beam response are studied. In order to... 

    Nonlinear free vibration of simply supported beams considering the effects of shear deformation and rotary inertia, a homotopy perturbation approach

    , Article International Journal of Modern Physics B ; Volume 25, Issue 3 , 2011 , Pages 441-455 ; 02179792 (ISSN) Mojahedi, M ; Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    2011
    Abstract
    The objective of this paper is to apply He's homotopy perturbation method (HPM) to analyze nonlinear free vibration of simply supported Timoshenko beams considering the effects of rotary inertia and shear deformation. First, the equation governing the nonlinear free vibration of a Timoshinko beam is nondimensionalized. Galerkin's projection method is utilized to reduce the governing nonlinear partial differential equation to a nonlinear ordinary differential equation. HPM is then used to find analytic expressions for nonlinear natural frequencies of the pre-stretched beam. A parametric study has also been applied in order to investigate the effects of design parameters such as applied axial... 

    An analytical solution for free vibration of elastically restrained timoshenko beam on an arbitrary variable winkler foundation and under axial load

    , Article Latin American Journal of Solids and Structures ; Volume 12, Issue 13 , 2015 , Pages 2417-2438 ; 16797817 (ISSN) Ghannadiasl, A ; Mofid, M ; Sharif University of Technology
    Abstract
    Natural frequencies are important dynamic characteristics of a structure where they are required for the forced vibration analysis and solution of resonant response. Therefore, the exact solution to free vibration of elastically restrained Timoshenko beam on an arbitrary variable elastic foundation using Green Function is presented in this paper. An accurate and direct modeling technique is introduced for modeling uniform Timoshenko beam with arbitrary boundary conditions. The applied method is based on the Green Function. Thus, the effect of the translational along with rotational support flexibilities, as well as, the elastic coefficient of Winkler foundation and other parameters are... 

    Dynamic feedback stabilization of timoshenko beam with internal input delays

    , Article WSEAS Transactions on Mathematics ; Volume 17 , 2018 , Pages 101-112 ; 11092769 (ISSN) Genqi, X ; Jalili Rahmati, A ; Badpar, F ; Sharif University of Technology
    World Scientific and Engineering Academy and Society  2018
    Abstract
    In this paper, we consider the exponential stabilization problem of a Timoshenko beam with interior local controls with input delays. In the past, most of the stabilization results for the Timoshenko beam were on the boundary control with input delays. In the present paper we shall extend the method treating the boundary control with delays to the case of interior local control with delays. Essentially we design a new dynamic feedback control laws that stabilizes exponentially the system. Detail of the design procedure of the dynamic feedback controller and analysis of the exponential stability are given. © 2018 World Scientific and Engineering Academy and Society. All Rights Reserved  

    Non-linear Vibration Analysis of Timoshenko Curved Beam with Non-linear End Supports

    , M.Sc. Thesis Sharif University of Technology Gorbanzadeh Makuei, Behzad (Author) ; Mohammad Navazi, Hossein (Supervisor)
    Abstract
    Three dimensional analyses have been carried out for predicting the behavior of the jointed rock slope of the abutments of the bridge which is proposed to be constructed across the river Karun4 in Iran using 3DEC. The rock overall slope angle is approximately 60 to 70 degrees, composed of highly jointed rock mass and the joint spacing and orientation are varying at different locations. Since 3DEC is a three-dimensional numerical code, utilizes a Lagrangian calculation scheme to model large movements and deformations of a blocky system, allows for modeling of large movements and rotations, and including complete detachment of rigid or deformable discrete blocks has been utilized for the... 

    Continuous model for flexural vibration analysis of Timoshenko beams with a vertical edge crack

    , Article Archive of Applied Mechanics ; 2014 ; ISSN: 09391533 Heydari, M ; Ebrahimi, A ; Behzad, M ; Sharif University of Technology
    Abstract
    In this paper, a continuous model for flexural vibration of beams with a vertical edge crack including the effects of shear deformation and rotary inertia is presented. The crack is assumed to be an open-edge crack perpendicular to the neutral plane. A quasi-linear displacement filed is suggested for the beam, and the strain and stress fields are calculated. The governing equation of motion for the beam has been obtained using Hamilton principle. The equation of motion is solved with a modified weighted residual method, and the natural frequencies and mode shapes are obtained. The results are compared to the results of similar model with Euler–Bernoulli assumptions and finite element model... 

    A timoshenko beam element based on the modified couple stress theory

    , Article International Journal of Mechanical Sciences ; Vol. 79, issue , 2014 , pp. 75-83 ; ISSN: 00207403 Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    Since the classical continuum theory is neither able to evaluate the accurate stiffness nor able to justify the size-dependency of micro-scale structures, the non-classical continuum theories such as the modified couple stress theory have been developed. In this paper, a new comprehensive Timoshenko beam element has been developed on the basis of the modified couple stress theory. The shape functions of the new element are derived by solving the governing equations of modified couple stress Timoshenko beams. Subsequently, the mass and stiffness matrices are developed using energy approach and Hamilton's principle. The formulations of the modified couple stress Euler-Bernoulli beam element... 

    Dynamic green function for response of timoshenko beam with arbitrary boundary conditions

    , Article Mechanics Based Design of Structures and Machines ; Volume 42, Issue 1 , 2 January , 2014 , Pages 97-110 ; ISSN: 15397734 Ghannadiasl, A ; Mofid, M ; Sharif University of Technology
    Abstract
    This paper presents the dynamic response of uniform Timoshenko beams with arbitrary boundary conditions using Dynamic Green Function. An exact and direct modeling technique is stated to model beam structures with arbitrary boundary conditions subjected to the external load that is an arbitrary function of time t and coordinate x and the concentrated moving load. This technique is based on the Dynamic Green Function. The effect of different boundary conditions, load, and other parameters is assessed. Finally, some numerical examples are shown to illustrate the efficiency and simplicity of the new formulation based on the Dynamic Green Function  

    Nonlinear dynamic analysis of an axially loaded rotating Timoshenko beam with extensional condition included subjected to general type of force moving along the beam length

    , Article JVC/Journal of Vibration and Control ; Volume 19, Issue 16 , 2013 , Pages 2448-2458 ; 10775463 (ISSN) Mamandi, A ; Kargarnovin, M. H ; Sharif University of Technology
    2013
    Abstract
    In this paper the non-planar nonlinear dynamic responses of an axially loaded rotating Timoshenko beam subjected to a three-directional force traveling with a constant velocity is studied. On deriving the nonlinear coupled partial differential equations (PDEs) of motion the stretching effect of the beam's neutral axis due to the pinned-pinned ends' condition in conjunction with the von Karman strain-displacement relation are considered. The beam's nonlinear governing coupled PDEs of motion for the bending rotations of warped cross-section, longitudinal and lateral displacements are derived using Hamilton's principle. To obtain the dynamic responses of the beam, derived PDEs of motion are... 

    Vibration analysis of delaminated Timoshenko beams under the motion of a constant amplitude point force traveling with uniform velocity

    , Article International Journal of Mechanical Sciences ; Volume 70 , 2013 , Pages 39-49 ; 00207403 (ISSN) Kargarnovin, M. H ; Jafari Talookolaei, R. A ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    A composite beam with single delamination traveled by a constant amplitude moving force is modeled accounting for the Poisson's effect, shear deformation and rotary inertia. The mechanical behavior between the delaminated surfaces is modeled using a piecewise-linear spring foundation. The governing differential equations of motion for such system are derived. Primarily, eigen-solution technique is used to obtain the natural frequencies and their corresponding mode shapes of such beam. Then, the Ritz method is employed to derive the dynamic response of the beam due to the moving force. The obtained results for the free and forced vibrations of beams are verified against reported similar... 

    An investigation on effects of traveling mass with variable velocity on nonlinear dynamic response of an inclined Timoshenko beam with different boundary conditions

    , Article International Journal of Mechanical Sciences ; Volume 52, Issue 12 , 2010 , Pages 1694-1708 ; 00207403 (ISSN) Mamandi, A ; Kargarnovin, M. H ; Farsi, S ; Sharif University of Technology
    2010
    Abstract
    In this paper, the nonlinear dynamic response of an inclined Timoshenko beam with different boundary conditions subjected to a traveling mass with variable velocity is investigated. The nonlinear coupled partial differential equations of motion for the bending rotation of cross-section, longitudinal and transverse displacements are derived using Hamilton's principle. These nonlinear coupled PDEs are solved by applying Galerkin's method to obtain dynamic response of the beam under the act of a moving mass. The appropriate parametric studies by taking into account the effects of the magnitude of the traveling mass, the velocity of the traveling mass with a constant acceleration/ deceleration... 

    An investigation on thermomechanical flexural response of shape-memory-polymer beams

    , Article International Journal of Applied Mechanics ; Volume 8, Issue 5 , 2016 ; 17588251 (ISSN) Molaaghaie Roozbahani, M ; Heydarzadeh, N ; Baghani, M ; Eskandari, A. H ; Baniassadi, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2016
    Abstract
    In this paper, the predictions of different beam theories for the behavior of a shape memory polymer (SMP) beam in different steps of a thermomechanical cycle are compared. Employing the equilibrium equations, the governing equations of the deflection of a SMP beam in the different steps of a thermomechanical cycle, for higher order beam theories (Timoshenko Beam Theory and von-Kármán Beam Theory), are developed. For the Timoshenko Beam Theory, a closed form analytical solution for various steps of the thermomechanical cycle is presented. The nonlinear governing equations in von-Kármán Beam theory are numerically solved. Results reveal that in the various beam length to beam thickness... 

    Continuum models calibrated with atomistic simulations for the transverse vibrations of silicon nanowires

    , Article International Journal of Engineering Science ; Volume 100 , 2016 , Pages 8-24 ; 00207225 (ISSN) Nejat Pishkenari, H ; Afsharmanesh, B ; Tajaddodianfar, F ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    We have conducted Molecular Dynamics (MD) simulations with the Environment-Dependent Interatomic Potential (EDIP) to obtain the natural frequency of ultra-thin Silicon Nanowires (SiNWs) with various crystallographic structures, boundary conditions and dimensions. As expected, results show that the mechanical properties of SiNWs are size-/orientation-dependent. The observed phenomena are ascribed to the surface effects which become dominant due to the large surface-to-volume number of atoms at the investigated range of dimensions. Due to their accuracy, atomistic simulations are widely accepted for the investigations of such nano-scaled systems; however, they suffer from high computational... 

    Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam

    , Article Applied Physics A: Materials Science and Processing ; Volume 123, Issue 1 , 2017 ; 09478396 (ISSN) Azimi, M ; Mirjavadi, S. S ; Shafiei, N ; Hamouda, A. M. S ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    The free vibration analysis of rotating axially functionally graded nanobeams under an in-plane nonlinear thermal loading is provided for the first time in this paper. The formulations are based on Timoshenko beam theory through Hamilton’s principle. The small-scale effect has been considered using the nonlocal Eringen’s elasticity theory. Then, the governing equations are solved by generalized differential quadrature method. It is supposed that the thermal distribution is considered as nonlinear, material properties are temperature dependent, and the power-law form is the basis of the variation of the material properties through the axial of beam. Free vibration frequencies obtained are... 

    Analytical determination of shear correction factor for Timoshenko beam model

    , Article Steel and Composite Structures ; Volume 29, Issue 4 , 2018 , Pages 483-491 ; 12299367 (ISSN) Moghtaderi, S. H ; Faghidian, S. A ; Shodja, H. M ; Sharif University of Technology
    Techno Press  2018
    Abstract
    Timoshenko beam model is widely exploited in the literature to examine the mechanical behavior of stubby beam-like components. Timoshenko beam theory is well-known to require the shear correction factor in order to recognize the non-uniform shear distribution at a section. While a variety of shear correction factors are appeared in the literature so far, there is still no consensus on the most appropriate form of the shear correction factor. The Saint-Venant's flexure problem is first revisited in the frame work of the classical theory of elasticity and a highly accurate approximate closed-form solution is presented employing the extended Kantorovich method. The resulted approximate solution...