Loading...
Search for: thin-film-devices
0.007 seconds

    Sintering characterizations of Ag-nano film on silicon substrate

    , Article Advanced Materials Research ; Volume 829 , 2014 , Pages 342-346 ; ISSN: 10226680 ; ISBN: 9783037859070 Keikhaie, M ; Akbari, J ; Movahhedi, M. R ; Alemohammad, H ; Sharif University of Technology
    Abstract
    Nowadays, thin films have many applications in every field. So, in order to improve the performance of thin film devices, it is necessary to characterize their mechanical as well as electrical properties. In this research work we focus on the development of a model for the analysis of the mechanical and electrical properties of silver nanoparticles deposited on silicon substrates. The model consists of inter-particle diffusion modeling and finite element analysis. In this study, through the simulation of the sintering process, it is shown that how the geometry, density, and electrical resistance of the thin film layer are changed with sintering conditions. The model is also used to... 

    Numerical study of material properties, residual stress and crack development in sintered silver nano-layers on silicon substrate

    , Article Scientia Iranica ; Volume 23, Issue 3 , 2016 , Pages 1037-1047 ; 10263098 (ISSN) Keikhaie, M ; Movahhedy, M. R ; Akbari, J ; Alemohammad, H ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    In order to improve the performance of thin film devices, it is necessary to characterize their mechanical, as well as electrical, properties. In this work, a model is developed for analysis of the mechanical and electrical properties and the prediction of residual stresses in thin films of silver nanoparticles deposited on silicon substrates. The model is based on inter-particle diffusion modeling and finite element analysis. Through simulation of the sintering process, it is shown how the geometry, density, and electrical resistance of the thin film layers are changed by sintering conditions. The model is also used to approximate the values of Young's modulus and the generated residual... 

    Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 47 , 2009 , Pages 20214-20220 ; 19327447 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    Abstract
    Graphene oxide platelets synthesized by using a chemical exfoliation method were deposited on anatase TiO2 thin films. Postannealing of the graphene oxide/TiO2 thin films at 400 °C in air resulted in partial formation of a Ti-C bond between the platelets and their beneath thin film. By using atomic force microscopy and X-ray photoelectron spectroscopy analyses, UV-visible light-induced photocatalytic reduction of the graphene oxide platelets of the annealed graphene oxide/TiO2. thin films immersed in ethanol was studied for the different irradiation times. After 4 h of photocatalytic reduction, the vertical space between the platelets decreased from about 1.1 to less than 0.8 nm and the... 

    Capping antibacterial Ag nanorods aligned on Ti interlayer by mesoporous TiO2 layer

    , Article Surface and Coatings Technology ; Volume 203, Issue 20-21 , 2009 , Pages 3123-3128 ; 02578972 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2009
    Abstract
    In this work, aligned and compact Ag nanorods capped by sol-gel mesoporous TiO2 layer were grown on Ti/Si(100) in order to be applied in antibacterial applications. The Ag nanorods with a high effective surface were grown by applying an electric field perpendicular to the surface of the Ag/Ti/Si thin film while it was being heat-treated at 700 °C in an Ar + H2 ambient. The grown silver nanorods had widths and lengths of 20-50 and 250-500 nm with an abundance in {100} facet, respectively. The TiO2 cap layer also had the specific surface area, the total pore volume and the pore diameter of 474 m2/g, 0.49 cm3/g and 8.0 nm, respectively. Antibacterial activities of the TiO2-capped Ag nanorods... 

    Enhancement of antibacterial properties of Ag nanorods by electric field

    , Article Science and Technology of Advanced Materials ; Volume 10, Issue 1 , 2009 ; 14686996 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2009
    Abstract
    The effect of an electric field on the antibacterial activity of columnar aligned silver nanorods was investigated. Silver nanorods with a polygonal cross section, a width of 20-60 nm and a length of 260-550 nm, were grown on a titanium interlayer by applying an electric field perpendicular to the surface of a Ag/Ti/Si(100) thin film during its heat treatment at 700 °C in an Ar+H2 environment. The optical absorption spectrum of the silver nanorods exhibited two peaks at wavelengths of 350 and 395 nm corresponding to the main surface plasmon resonance bands of the one-dimensional silver nanostructures. It was found that the silver nanorods with an fcc structure were bounded mainly by {100}... 

    Pulsed-laser annealing of NiTi shape memory alloy thin film

    , Article Journal of Materials Science and Technology ; Volume 25, Issue 1 , 2009 , Pages 135-140 ; 10050302 (ISSN) Sadrnezhaad, S. K ; Rezvani, E ; Sanjabi, S ; Ziaei Moayed, A. A ; Sharif University of Technology
    Abstract
    Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheated Si (100) and Silica (111) substrates were used for annealing. Delicate treatment with 15.92 W/mm2 power density resulted in crystallization of small spots; while 16.52 and 17.51 W/mm2 power densities caused ablation of the amorphous layer. Optical microscopy, scanning electron microscopy, X-ray diffraction and atomic force microscopy were performed to characterize the microstructure and surface morphology of the amorphous/crystallized spot patterns  

    Modeling the instability behavior of thin film devices: Fermi Level Pinning

    , Article Superlattices and Microstructures ; Volume 117 , 2018 , Pages 399-405 ; 07496036 (ISSN) Moeini, I ; Ahmadpour, M ; Gorji, N. E ; Sharif University of Technology
    Academic Press  2018
    Abstract
    We investigate the underlying physics of degradation/recovery of a metal/n-CdTe Schottcky junction under reverse or forward bias stressing conditions. We used Sah-Noyce-Shockley (SNS) theory to investigate if the swept of Fermi level pinning at different levels (under forward/reverse bias) is the origin of change in current-voltage characteristics of the device. This theory is based on Shockley-Read-Hall recombination within the depletion width and takes into account the interface defect levels. Fermi Level Pinning theory was primarily introduced by Ponpon and developed to thin film solar cells by Dharmadasa's group in Sheffield University-UK. The theory suggests that Fermi level pinning at... 

    Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation

    , Article Applied Catalysis A: General ; Volume 369, Issue 1-2 , 2009 , Pages 77-82 ; 0926860X (ISSN) Akhavan, O ; Azimirad, R ; Sharif University of Technology
    2009
    Abstract
    The visible light photocatalytic activity of α-Fe2O3 nanograin chains coated by anatase TiO2 nanolayer, as a photocatalyst thin film for inactivation of Escherichia coli bacteria, was investigated for the solutions containing 106 colony forming units per milliliter of the bacteria, without and with H2O2 (60 μM). Thin films of the α-Fe2O3 nanograins with the grain size of 40-280 nm were grown on glass substrates by post-annealing of the thermal evaporated Fe3O4 thin films at 400 °C in air. The TiO2 layer with thickness of about 20 nm was coated on the nanograins by dipping the Fe2O3 thin films in a prepared TiO2 sol and re-annealing them at 400 °C in air. The antibacterial activity of the... 

    Bactericidal effects of Ag nanoparticles immobilized on surface of SiO2 thin film with high concentration

    , Article Current Applied Physics ; Volume 9, Issue 6 , 2009 , Pages 1381-1385 ; 15671739 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2009
    Abstract
    Bactericidal activity of high concentration Ag nanoparticles immobilized on surface of an aqueous sol-gel silica thin film was investigated against Escherichia coli and Staphylococcus aureus bacteria. Size of the surface nanoparticles was estimated in the range of 35-80 nm by using atomic force microscopy. Due to accumulation of the silver nanoparticles at near the surface (at depth of 6 nm and about 40 times greater than the silver concentration in the sol), the synthesized Ag-SiO2 thin film (with area of 10 mm2) presented strong antibacterial activities against E. coli and S. aureus bacteria with relative rate of reduction of the viable bacteria of 1.05 and 0.73 h-1 for initial... 

    Design, modeling and optimization of a piezoelectric pressure sensor based on thin-film PZT diaphragm contain of nanocrystalline powders

    , Article 2009 6th International Symposium on Mechatronics and its Applications, ISMA 2009, Sharjah, 23 March 2009 through 26 March 2009 ; 2009 ; 9781424434817 (ISBN) Mohammadi, V ; Sheikhi, M. H ; Torkian, S ; Barzegar, A ; Masumi, E ; Mohammadi, S ; Sharif University of Technology
    2009
    Abstract
    In this paper fabrication of a 0-3 ceramic/ceramic composite lead zirconate titanate, Pb(Zr0.52Ti0.48)O3 thin film has been presented and then a pressure sensor based on multilayer thin-film PZT diaphragm contain of Lead Zirconate Titanate nanocrystalline powders was designed, modeled and optimized. This multilayer diaphragm in general acts as sensor or actuator. ANSYS was used for simulation of diaphragm. Dynamics characteristics of this multilayer diaphragm have been investigated. By this simulation the effective parameters of the multilayer PZT diaphragm for improving the performance of a pressure sensor in different ranges of pressure are optimized. The optimized thickness ratio of PZT... 

    Synthesis and electrochromic study of sol-gel cuprous oxide nanoparticles accumulated on silica thin film

    , Article Thin Solid Films ; Volume 517, Issue 24 , 2009 , Pages 6700-6706 ; 00406090 (ISSN) Akhavan, O ; Tohidi, H ; Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    In this study, electrochromic properties of cuprous oxide nanoparticles, self-accumulated on the surface of a sol-gel silica thin film, have been investigated by using UV-visible spectrophotometry in a lithium-based electrolyte cell. The cuprous oxide nanoparticles showed a reversible electrochromic process with a thin film transmission reduction of about 50% in a narrow wavelength range of 400-500 nm, as compared to the bleached state of the film. Using optical transmission measurement, we have found that the band gap energy of the films reduced from 2.7 eV for Cu2O to 1.3 eV for CuO by increasing the annealing temperature from 220 to 300 °C in an N2 environment for 1 h. Study of the band... 

    Development of nanocrystalline TiO2-Er2O3 and TiO2-Ta2O5 thin film gas sensors: Controlling the physical and sensing properties

    , Article Sensors and Actuators, B: Chemical ; Volume 141, Issue 1 , 2009 , Pages 76-84 ; 09254005 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2009
    Abstract
    A systematic comparison of single and binary metal oxide TiO2, TiO2-Er2O3 and TiO2-Ta2O5 thin film gas sensors with nanocrystalline and mesoporous microstructure, prepared by sol-gel route, was conducted. The gas sensitivity was increased by secondary phase introduction into TiO2 film via two mechanisms, firstly due to the inhibition of anatase-to-rutile transformation, since the anatase phase accommodates larger amounts of adsorbed oxygen, and secondly due to the retardation of grain growth, since the higher surface area provides more active sites for gas molecule adsorption. The binary metal oxide gas sensors exhibited a remarkable response towards low concentrations of CO and NO2 gases at...