Loading...
Search for: thermomechanical-treatment
0.009 seconds
Total 21 records

    Joining metals by combining mechanical stirring and thermomechanical treatment to form a globular weld structure

    , Article 9th International Conference on Semi-Solid Processing of Alloys and Composites, S2P 2006, Busan, 11 September 2006 through 13 September 2006 ; Volume 116-117 , 2006 , Pages 397-401 ; 10120394 (ISSN); 3908451264 (ISBN); 9783908451266 (ISBN) Amirkhiz, B. S ; Aashuri, H ; Kokabi, A ; Gharacheh, M. A ; Mola, J ; Sharif University of Technology
    Trans Tech Publications Ltd  2006
    Abstract
    A method for joining metals in the semisolid state is presented. A model alloy Sn-15%Pb was used to demonstrate the concept. By presented process, dendritic microstructure of the weld zone can be avoided. Moreover, near-weld zone of the cold worked substrates which is affected by heat would have a globular structure due to a thermomechanical treatment. The two substrates were heated up locally in the joint line to the semisolid temperature range. At this point a stirrer was introduced into the weld seam in order to mix the two sides into a single uniform joint. Localized mechanical properties of different zones were examined using Shear Punch Test (SPT), showing a good strength in the weld... 

    Effect of thermomechanical parameters on texture of 90-10 brass sheets

    , Article 14th International Conference on Textures of Materials, ICOTOM 14, Leuven, 11 July 2005 through 15 July 2005 ; Volume 495-497, Issue PART 1 , 2005 , Pages 755-760 ; 02555476 (ISSN); 087849975X (ISBN); 9780878499755 (ISBN) Salari, M ; Akbarzadeh, A ; Saffari, M. M ; Sharif University of Technology
    Trans Tech Publications Ltd  2005
    Abstract
    Optimized conditions of hot and cold rolling followed by annealing can result in a balance between recrystallization and rolling textures in order to reduce the planar anisotropy of brass sheets. In this work, the effect of finish rolling temperature, cold reduction and annealing temperature on texture development has been investigated. It is shown that uniform deformation at higher finishing temperature is responsible of formation of a severe Cube and G texture components. In contrast, mechanical twinnings are widely formed at low finishing temperatures. There is also a direct relation between the intensity of Cube component and the amount of cold reduction  

    Study and Controlling Microstructure of Rapidly Solidified Multiprinciple Fe, Co and Ni Alloy

    , M.Sc. Thesis Sharif University of Technology Ghiasi Afjeh, Mohammad Bagher (Author) ; Tavakoli, Rouhollah (Supervisor) ; Aashuri, Hossein (Supervisor)
    Abstract
    Multi-principle alloys exhibit microstructure and different properties from most conventional alloys due to their high entropy, very slow diffusion and distorted crystal structure properties. Heat treatment, thermomechanical treatment, addition of alloying elements and control of solidification process are common methods of microstructure modification and property improvement. Among the solidification parameters, undercooling and cooling rate is one of the most suitable methods to obtain semi-stable and fine-grained phases. These parameters have been less studied in multi-principle alloys, while in the case of ferrous and cobalt alloys has been much studied. The main purpose of this type of... 

    Effect of microstructural inhomogeneities on texture evolution in 90-10 Brass sheets

    , Article Journal of Materials Processing Technology ; Volume 182, Issue 1-3 , 2007 , Pages 440-444 ; 09240136 (ISSN) Salari, M ; Akbarzadeh, A ; Sharif University of Technology
    2007
    Abstract
    The control of texture and microstructure can be achieved by an appropriate thermomechanical treatment in industrial production. The effects of finish rolling temperature, cold reduction and annealing temperature on texture development and microstructure in Brass sheet were investigated. The role of deformation inhomogeneities on texture evolution has been considered. The formation of transition bands during hot rolling enforced the intensity of cube components. Shear bands increased the intensities of S and Cu components after cold rolling and at higher cold reductions. Transition from Cu to Y and Y to Bs was completed better because of mechanical twinning. Thermal twins annihilated the... 

    Prediction of effect of thermo-mechanical parameters on mechanical properties and anisotropy of aluminum alloy AA3004 using artificial neural network

    , Article Materials and Design ; Volume 28, Issue 5 , 2007 , Pages 1678-1684 ; 02613069 (ISSN) Forouzan, S ; Akbarzadeh, A ; Sharif University of Technology
    Elsevier Ltd  2007
    Abstract
    An artificial neural network model, using a back-propagation learning algorithm is utilized, to predict the yield stress, elongation, ultimate tension stress, over(R, -) and {divides}ΔR{divides} during hot rolling, cold rolling and annealing of AA3004 aluminum alloy. Input nodes were chosen as the ratio of initial to final thicknesses, reduction, preheating time and temperature, finish rolling temperature and the final annealing temperature. The maximum error for predicted values was 6.35%, the average of absolute relative error was 0.57% and the RMS was 0.00998. It was found that the mechanical properties and anisotropy of AA3004 alloy sheets can be predicted by this approach. © 2006... 

    Thermomechanical modelling of hot slab rolling

    , Article Materials Science and Technology ; Volume 21, Issue 1 , 2005 , Pages 93-102 ; 02670836 (ISSN) Serajzadeh, S ; Sharif University of Technology
    2005
    Abstract
    A model is developed to evaluate strain and temperature fields as well as to predict microstructural changes within the metal during a hot rolling operation. For this purpose, the governing heat conduction and energy equations are solved with the aid of a two-dimensional finite element method and Galerkin and Petrov-Galerkin techniques. Also, to consider microstructural changes such as dynamic and static recrystallisation, the Bergstrom dislocation model and Avrami's equation are coupled with the finite element model. Verification of the modelling results is performed through hot rolling experiments and microstructural studies. The comparison between the experimental and the theoretical... 

    Globular structure of ZA27 alloy by thermomechanical and semi-solid treatment

    , Article Materials Science and Engineering A ; Volume 391, Issue 1-2 , 2005 , Pages 77-85 ; 09215093 (ISSN) Aashuri, H ; Sharif University of Technology
    2005
    Abstract
    The dendritic structure of a cast ZA27 alloy can be transformed into a globular structure, if it is cold worked prior to being held in a semi-solid condition. The globular or the equiaxed particles are surrounded by the lower melting matrix. The dendritic structure was swaged and recrystallised prior to holding in a semi-solid state in this investigation. The semi-solid holding of the alloy at temperatures above and below that of peritectic reaction was carried out for various lengths of time. It was shown that the liquid fraction is decreased to below the peritectic temperature which leads to a reduction of lubrication between the solid globules and an increasing deformation force. Holding... 

    Evaluation the Effect of Thermo-Mechanical Parameters on Microstructure and Texture of Electrical Steel for Improving Magnetic Permeability

    , M.Sc. Thesis Sharif University of Technology Ahmadian, Peyman (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Dependence of some magnetic properties such as core loss and permeability on temper rolling was studied in this thesis. It is shown that with a proper temper rolling sharper textures are obtained in the electrical steel and the magnetic properties in the longitudinal and traverse directions are improved. By texture analysis, it is shown that because of temper rolling, shear strain on the surface of the sheet is the main factor for abnormal grain growth and shear texture formation on the surface. The result of formation of this texture is enhancement of the {100} intensity and reduction of the {111} intensity, leading to the improvement of the permeability. Temper rolling is always... 

    Developement of Bimodal Grain Size Microstructure in a Stainless Steel using Thermal-Mechanical Treatment

    , M.Sc. Thesis Sharif University of Technology Hojati, Zahra Sadat (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    Thermomechanical processing during hot rolling and subsequent annealing of rolled sheets are one of the procedures for improving the tensile and formability properties of metals and alloys. In this regard temperature and reduction in area are the most important variables governing the behavior of 304 L austenitic stainless steel during the hot rolling process. The aim of this research was to investigate the effect of rolling temperature and subsequent annealing on 304L steel in order to achieve a microstructure with favorable mechanical properties and bimodal grain size. For this purpose, the rolling process at temperatures of -50, 25, 200, 400, 600, 800 and 900 °C using different thickness... 

    On the effect of linear feedback and parametric pumping on a resonator's frequency stability

    , Article New Journal of Physics ; Volume 22, Issue 9 , September , 2020 Mohammadi, Z ; Heugel, T. L ; Miller, J. M. L ; Shin, D. D ; Kwon, H. K ; Kenny, T. W ; Chitra, R ; Zilberberg, O ; Villanueva, L. G ; Sharif University of Technology
    IOP Publishing Ltd  2020
    Abstract
    Resonant sensors based on micro- A nd nano-electro mechanical systems (M/NEMS) are ubiquitous in many sensing applications due to their outstanding performance capabilities, which are directly proportional to the quality factor (Q) of the devices. We address here a recurrent question in the field: Do dynamical techniques that modify the effective Q (namely parametric pumping and direct drive velocity feedback) affect the performance of said sensors? We develop analytical models of both cases, while remaining in the linear regime, and introduce noise in the system from two separate sources: Thermomechanical and amplifier (read-out) noise. We observe that parametric pumping enhances the... 

    A thermoelasticity solution of sandwich structures with functionally graded coating

    , Article Composites Science and Technology ; Volume 67, Issue 6 , 2007 , Pages 1073-1080 ; 02663538 (ISSN) Shodja, H. M ; Haftbaradaran, H ; Asghari, M ; Sharif University of Technology
    2007
    Abstract
    An exact thermoelasticity solution for a two-dimensional thick composite consisting of homogeneous and functionally graded layers is presented. The thermomechanical properties of functionally graded layers are assumed to vary exponentially through the thickness while the Poisson's ratio is taken to be constant. The heat transfer problem is solved under steady state condition accounting for the heat convection. Utilizing the stress function the governing equation reduces to a fourth order inhomogeneous partial differential equation which is solved exactly using Fourier series method. A comparative study is done between two sandwich structures with homogeneous and functionally graded coatings,... 

    Joining metals by combining mechanical stirring and thermomechanical treatment to form a globular weld structure

    , Article Solid State Phenomena ; Volume 116-117 , 2006 , Pages 397-401 ; 10120394 (ISSN) Shalchi Amirkhiz, B ; Aashuri, H ; Kokabi, A. H ; Abbasi Gharacheh, M ; Mola, J ; Sharif University of Technology
    Trans Tech Publications Ltd  2006
    Abstract
    A method for joining metals in the semisolid state is presented. A model alloy Sn-15%Pb was used to demonstrate the concept. By presented process, dendritic microstructure of the weld zone can be avoided. Moreover, near-weld zone of the cold worked substrates which is affected by heat would have a globular structure due to a thermomechanical treatment. The two substrates were heated up locally in the joint line to the semisolid temperature range. At this point a stirrer was introduced into the weld seam in order to mix the two sides into a single uniform joint. Localized mechanical properties of different zones were examined using Shear Punch Test (SPT), showing a good strength in the weld... 

    High temperature deformation and processing map of a NiTi intermetallic alloy

    , Article Intermetallics ; Volume 19, Issue 10 , October , 2011 , Pages 1399-1404 ; 09669795 (ISSN) Morakabati, M ; Aboutalebi, M ; Kheirandish, S ; Karimi Taheri, A ; Abbasi, S. M ; Sharif University of Technology
    2011
    Abstract
    The deformation behavior of a 49.8 Ni-50.2 Ti (at pct) alloy was investigated using the hot compression test in the temperature range of 700 °C-1100 °C, and strain rate of 0.001 s-1 to 1 s-1. The hot tensile test of the alloy was also considered to assist explaining the related deformation mechanism within the same temperature range and the strain rate of 0.1 s-1. The processing map of the alloy was developed to evaluate the efficiency of hot deformation and to identify the instability regions of the flow. The peak efficiency of 24-28% was achieved at temperature range of 900 °C-1000 °C, and strain rates higher than 0.01 s -1 in the processing map. The hot ductility and the deformation... 

    Modeling of hot isostatic pressing of metal powder with temperature-dependent cap plasticity model

    , Article International Journal of Material Forming ; Volume 6, Issue 3 , September , 2013 , Pages 363-376 ; 19606206 (ISSN) Khoei, A. R ; Molaeinia, Z ; Keshavarz, S ; Sharif University of Technology
    2013
    Abstract
    In this paper, the coupled thermo-mechanical simulation of hot isostatic pressing (HIPing) is presented for metal powders during densification process. The densification of powder is assumed to occur due to plastic hardening of metal particles. The constitutive model developed is used to describe the nonlinear behavior of metal powder. The numerical modeling of hot powder compaction simulation is performed based on the large deformation formulation, powder plasticity behavior, and frictional contact algorithm. A Lagrangian finite element formulation is employed for the large powder deformations. A modified cap plasticity model considering temperature effects is used in numerical simulation... 

    Thermomechanical behaviours of strip and work-rolls in cold rolling process

    , Article Journal of Strain Analysis for Engineering Design ; Volume 46, Issue 8 , June , 2011 , Pages 794-804 ; 03093247 (ISSN) Koohbor, B ; Serajzadeh, S ; Sharif University of Technology
    2011
    Abstract
    A finite element analysis was developed to determine thermomechanical behaviours of strip and work-roll during cold rolling process under practical rolling conditions. The velocity field was first obtained using a rigid-plastic finite element formulation and then it was used to assess the strain and stress distributions within the strip and at the same time, a thermal finite element model based on streamline upwind Petrov-Galerkin scheme was employed to predict temperature distribution within the metal being rolled. In the next stage, the predicted temperature and stress fields at the contact region of strip/work-roll were employed as the boundary conditions to evaluate the thermomechanical... 

    A new method for fabrication of in situ Al/Al3Ti-Al2O3 nanocomposites based on thermal decomposition of nanostructured tialite

    , Article Journal of Alloys and Compounds ; Volume 643 , 2015 , Pages 64-73 ; 09258388 (ISSN) Azarniya, A ; Madaah Hosseini, H.R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this research, the possibility that nanostructured aluminium titanate (tialite) powder can be used as a chemical source for producing Al2O3 and Al3Ti precipitates in aluminium matrix composites has been investigated. Optical microscopy, FE-SEM, XRD, DSC and TGA examinations were used to characterize the synthesized specimens. The results showed that a porous structure and inferior mechanical properties were obtained in as-sintered samples. The further thermomechanical treatments i.e. cyclic rolling and hot extrusion improved the mechanical properties and led to a dense microstructure with a homogeneous distribution of Al2O3 and... 

    An integrated model for prediction of thermo-mechanical behaviour of metal and work-rolls during hot strip rolling process

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 223, Issue 4 , 2009 , Pages 395-407 ; 09544054 (ISSN) Rezaei Farkoosh, A ; Serajzadeh, S ; Sharif University of Technology
    2009
    Abstract
    In this paper an integrated model has been developed that is capable of considering the effects of process parameters on the thermo-mechanical behaviour of the work-roll and the strip during hot rolling operations. The commercially finite element package ABAQUS is utilized to solve the governing equations, while an elasto-viscoplastic material behaviour is utilized in the model. The model may be employed in single-pass as well as multi-pass rolling layouts. Various aspects of the hot rolling process are predicted including temperature field and thermo-mechanical stresses within the work-roll as well as temperature, strain, and residual stresses distributions within the strip. To assess the... 

    Effect of thermomechanical processing on forming limit diagrams predicted by neural networks

    , Article Materials and Manufacturing Processes ; Volume 23, Issue 8 , 2008 , Pages 829-833 ; 10426914 (ISSN) Dehghani, K ; Shafiei M, A ; Naeimi, H ; Sharif University of Technology
    2008
    Abstract
    In the present work, an artificial neural network (ANN) model was developed for predicting the effect of thermo-mechanical processing on the forming limit diagram (FLD) of low carbon steels. The model introduced here considers the content of carbon, the hot finishing temperature, the degree of cold work, the work hardening exponent, the initial yield stress and the ASTM grain size as inputs; while, the predicted FLDs are presented as outputs. The results show that the predicted FLDs by the ANN model are very accurate exhibiting the maximum error of 9% over the whole strain region. The model predicted that with increasing the degree of cold rolling before annealing, the drawability is... 

    Globular structure of M2 high speed steel by thermomechanical treatment in the semisolid state

    , Article Steel Research International ; Volume 81, Issue 5 , May , 2010 , Pages 381-386 ; 16113683 (ISSN) Amin Ahmadi, B ; Aashuri, H ; Sharif University of Technology
    2010
    Abstract
    The globular structure of M2 high speed steel in the rolled - annealed and as cast conditions was investigated in the semisolid state. Metallographic observations resulted in globular austenite particles that were surrounded by a liquid phase. Dissolution of various carbides in the austenite phase at semisolid temperatures led to grain boundary liquation and formation of near-spherical solid grains in a liquid matrix. Therefore, at the semisolid state, the solid particles were free from carbides. MC-type and M6C-type eutectic carbides re-precipitated at the grain boundaries during cooling of the samples from the semisolid temperature. The variation of shape factor versus holding time and... 

    Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method

    , Article Materials and Design ; Volume 31, Issue 1 , 2010 , Pages 76-84 ; 02641275 (ISSN) Baniasadi, H ; Ramazani S. A. A ; Javan Nikkhah, S ; Sharif University of Technology
    Abstract
    The morphological, physical and mechanical properties of polypropylene/clay nanocomposites (PPCNs) were prepared by in situ polymerization are investigated. Non-modified scmectite type clay (e.g. bentonite) was used to prepare bi-supported Ziegler-Natta catalyst of TiCl4/Mg(OEt)2/clay. Exfoliated PPCNs were obtained by in situ intercalative polymerization of propylene using produced bi-supported catalyst. X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) micrograph were used to assess the clay morphology and dispersion of clay. The crystalline structures of PPCNs were characterized by differential scanning calorimetry (DSC). The mechanical properties of PPCNs were...