Loading...
Search for: thermodynamic-cycle
0.004 seconds

    Sensitivity analysis of gas turbine fuel consumption with respect to turbine stage efficiency

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 1 , 2012 , Pages 419-423 ; 9780791845172 (ISBN) Zeinalpour, M ; Mazaheri, K ; Irannejad, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, the effect of turbine stage efficiency on fuel consumption of both gas turbines and aerial engines is assessed quantitatively. At the beginning of the gas generator optimization to decrease the fuel consumption, it is necessary to analyze the sensitivity of fuel consumption to its main components efficiencies. This will guide us which component is more important to be optimized. Here a zero-dimensional analysis has been done to determine the effect of turbine stage efficiency on the fuel consumption. Results of this analysis are evaluated in the context of thermodynamic cycle of a gas turbine generator and an aerial engine. As an example, it is shown that if the efficiency of... 

    Design of a hybrid Ocean Thermal Energy Conversion with Solar Thermal Energy (OTEC-STE) system for energy production(case study: Oman sea region)

    , M.Sc. Thesis Sharif University of Technology Zakipour, Mohammad Mehdi (Author) ; Abbaspour Tehrani Fard, Majid (Supervisor)
    Abstract
    The ocean thermal energy conversion system is one of a variety of renewable marine energy that is made up of a thermodynamic cycle, and it uses the difference between the temperature of hot water at the ocean surface and cold water at the depths of the ocean to generate electricity. The closed cycle is one type in which the system uses a working fluid which its boiling point less than the boiling point of water. Increasing the temperature of the fluid inlet in the cycle increases the system efficiency, which has been applied in this study to increase the efficiency of the OTEC system. The required energy to increase this temperature has been achieved by adding a solar collector to this... 

    Multi objective optimization of solid oxide fuel cell stacks considering parameter effects: Fuel utilization and hydrogen cost

    , Article Journal of Renewable and Sustainable Energy ; Volume 5, Issue 5 , 2013 ; 19417012 (ISSN) Behzadi Forough, A ; Roshandel, R ; Sharif University of Technology
    2013
    Abstract
    In the context of stationary power generation, fuel cell based systems are being predicted as a valuable option to tabernacle the thermodynamic cycle based power plants. In this paper, multi objective optimization approach is used to optimize the planer solid oxide fuel cell (SOFC) stacks performance using genetic algorithm technique. Multi objective optimization generates the most attractive operating conditions of a SOFC system. This allows performing the optimization of the system regarding to two different objectives. Two pairs of different objectives are considered in this paper as distinguished strategies. In the first strategy, minimization of the breakeven per-unit energy cost... 

    Thermodynamic model for prediction of performance and emission characteristics of SI engine fuelled by gasoline and natural gas with experimental verification

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 7 , July , 2012 , Pages 2213-2225 ; 1738494X (ISSN) Mehrnoosh, D ; Asghar, H. A ; Asghar, M. A ; Sharif University of Technology
    2012
    Abstract
    In this study, a thermodynamic cycle simulation of a conventional four-stroke SI engine has been carried out to predict the engine performance and emissions. The first law of thermodynamics has been applied to determine in-cylinder temperature and pressure as a function of crank angle. The Newton-Raphson method was used for the numerical solution of the equations. The non-differential form of equations resulted in the simplicity and ease of the solution to predict the engine performance. Two-zone model for the combustion process simulation has been used and the mass burning rate was predicted by simulating spherical propagation of the flame front. Also, temperature dependence of specific... 

    Experimental and computational bridgehead C-H bond dissociation enthalpies

    , Article Journal of Organic Chemistry ; Volume 77, Issue 4 , January , 2012 , Pages 1909-1914 ; 00223263 (ISSN) Fattahi, A ; Lis, L ; Tehrani, Z. A ; Marimanikkuppam, S. S ; Kass, S. R ; Sharif University of Technology
    Abstract
    Bridgehead C-H bond dissociation enthalpies of 105.7 ± 2.0, 102.9 ± 1.7, and 102.4 ± 1.9 kcal mol -1 for bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, and adamantane, respectively, were determined in the gas phase by making use of a thermodynamic cycle (i.e., BDE(R-H) = ΔH° acid(H-X) - IE(H •) + EA(X •)). These results are in good accord with high-level G3 theory calculations, and the experimental values along with G3 predictions for bicyclo[1.1.1]pentane, bicyclo[2.1.1]hexane, bicyclo[3.1.1]heptane, and bicyclo[4.2.1]nonane were found to correlate with the flexibility of the ring system. Rare examples of alkyl anions in the gas phase are also provided