Loading...
Search for: thermal-boundary-conditions
0.007 seconds

    Thickness optimization of polyurethane floor insulation based on analysis of the heat transfer in a multi-layer

    , Article ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2014 ; Vol. 3, issue , 2014 Moosavi, A ; Saidi, M. H ; Reshadi, M ; Sharif University of Technology
    Abstract
    During the year, due to weather conditions, the temperature fluctuations at surface level cause problems in underground pipes as a result of freezing water. One of the best prevention strategies is the use of polyurethane floor insulation for keeping the temperature of clay above zero degrees Celsius. In this study to calculate the minimum thickness of polyurethane insulation layer, the differential equation of energy is solved based on principle of separation of variables using imaginary eigenvalues for consistency with the temperature distribution in multi-layer consist of asphalt, gravel and polyurethane with finite thickness and clay as a semiinfinite medium with periodic thermal... 

    Gaseous slip flow mixed convection in vertical microducts with constant axial energy input

    , Article Journal of Heat Transfer ; Vol. 136, issue. 3 , 2014 ; ISSN: 00221481 Sadeghi, A ; Baghani, M ; Saidi, M. H ; Sharif University of Technology
    Abstract
    The present investigation is devoted to the fully developed slip flow mixed convection in vertical microducts of two different cross sections, namely, polygon, with circle as a limiting case, and rectangle. The two axially constant heat flux boundary conditions of H1 and H2 are considered in the analysis. The velocity and temperature discontinuities at the boundary are incorporated into the solutions using the first-order slip boundary conditions. The method considered is mainly analytical in which the governing equations in cylindrical coordinates along with the symmetry conditions and finiteness of the flow parameter at the origin are exactly satisfied. The first-order slip boundary... 

    Temperature rise in electroosmotic flow of typical non-newtonian biofluids through rectangular microchannels

    , Article Journal of Heat Transfer ; Volume 136, Issue 3 , March , 2014 ; ISSN: 00221481 Yavari, H ; Sadeghi, A ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    Electroosmosis is the main mechanism for flow generation in lab-on-a-chip (LOC) devices. The temperature rise due to the Joule heating phenomenon, associated with the electroosmosis, may be detrimental for samples being considered in LOCs. Hence, a complete understanding of the heat transfer physics associated with the electroosmotic flow is of high importance in design and active control of LOCs. The objective of the present study is to estimate the temperature rise and the thermal entry length in electroosmotic flow through rectangular microchannels, having potential applications in LOC devices. Along this line, the power-law rheological model is used to account for non-Newtonian behavior... 

    Buoyancy effects on gaseous slip flow in a vertical rectangular microchannel

    , Article Microfluidics and Nanofluidics ; Vol. 16, issue. 1-2 , 2014 , pp. 207-224 ; ISSN: 16134982 Sadeghi, M ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Consideration is given to the buoyancy effects on the fully developed gaseous slip flow in a vertical rectangular microduct. Two different cases of the thermal boundary conditions are considered, namely uniform temperature at two facing duct walls with different temperatures and adiabatic other walls (case A) and uniform heat flux at two walls and uniform temperature at other walls (case B). The rarefaction effects are treated using the firstorder slip boundary conditions. By means of finite Fourier transform method, analytical solutions are obtained for the velocity and temperature distributions as well as the Poiseuille number. Furthermore, the threshold value of the mixed convection... 

    Gaseous slip flow forced convection in microducts of arbitrary but constant cross section

    , Article Nanoscale and Microscale Thermophysical Engineering ; Vol. 18, issue. 4 , 2014 , p. 354-372 Baghani, M ; Sadeghi, A ; Sharif University of Technology
    Abstract
    This is a theoretical study that extends a classical method of treating the convection heat transfer in complex geometries to gaseous slip flow forced convection in microchannels with H1 thermal boundary condition. Through this line, the momentum and energy equations in cylindrical coordinates are made dimensionless. Afterward, solutions are presented that exactly satisfy the dimensionless differential equations along with the symmetry condition and finiteness of the flow parameter at the origin. The first-order slip boundary conditions are then applied to the solution utilizing the least squares matching method. Though the method is general enough to be applied to almost any arbitrary cross... 

    Joule heating effects in electrokinetically driven flow through rectangular microchannels: An analytical approach

    , Article Nanoscale and Microscale Thermophysical Engineering ; Volume 17, Issue 3 , 2013 , Pages 173-193 ; 15567265 (ISSN) Sadeghi, A ; Kazemi, Y ; Saidi, M. H ; Sharif University of Technology
    2013
    Abstract
    This is a theoretical study dealing with mixed electroosmotic and pressure-driven flow of a Newtonian liquid in a rectangular microchannel. Both and thermal boundary conditions are considered and the Debye-Hückel linearization is invoked. The governing equations are made dimensionless assuming fully developed conditions and then analytically solved using an infinite series solution. The governing factors are found to be the dimensionless Debye-Hückel parameter, velocity scale ratio, dimensionless Joule heating parameter, and channel aspect ratio. The results indicate that the Nusselt number is an increasing function of the channel aspect ratio, whereas the opposite is true for the velocity... 

    Thermal transport characteristics pertinent to electrokinetic flow of power-law fluids in rectangular microchannels

    , Article International Journal of Thermal Sciences ; Vol. 79, issue , 2014 , p. 76-89 Vakili, M. A ; Saidi, M. H ; Sadeghi, A ; Sharif University of Technology
    Abstract
    In the present study, the thermal characteristics of electroosmotic flow of power-law fluids in rectangular microchannels in the presence of pressure gradient are investigated. The governing equations for fully developed flow under H1 thermal boundary conditions are first made dimensionless and subsequently solved through a finite difference procedure for a non-uniform grid. The influence of the major parameters on thermal features of the flow such as the temperature distribution and Nusselt number is discussed by a complete parametric study. The results reveal that the channel aspect ratio and the non-Newtonian characteristic of the fluid can affect the thermal behavior of the flow. It is... 

    Lattice Boltzmann simulation of convective flow and heat transfer in a nanofluid-filled hollow cavity

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 29, Issue 9 , 2019 , Pages 3075-3094 ; 09615539 (ISSN) Pu, Q ; Aalizadeh, F ; Aghamolaei, D ; Masoumnezhad, M ; Rahimi, A ; Kasaeipoor, A ; Sharif University of Technology
    Emerald Group Publishing Ltd  2019
    Abstract
    Purpose: This paper aims to to simulate the flow and heat transfer during free convection in a square cavity using double-multi-relaxation time (MRT) lattice Boltzmann method. Design/methodology/approach: The double-MRT lattice Boltzmann method is used, and the natural convection fluid flow and heat transfer under influence of different parameters are analyzed. The D2Q5 model and D2Q9 model are used for simulation of temperature field and flow field, respectively. The cavity is filled with CuO-water nanofluid; in addition, the thermo-physical properties of nanofluid and the effect of nanoparticles’ shapes are considered using Koo–Kleinstreuer–Li (KKL) model. On the other hand, the cavity is... 

    Experimental evaluation of forced convective heat transfer of Fe3O4 ferrofluid in a horizontal u-shaped tube under variable magnetic field effect based on Taguchi approach

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 43, Issue 4 , 2021 ; 16785878 (ISSN) Eslahchi, A ; Nobakhti, M. H ; Shafii, M. B ; Dibaei Bonab, M. H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this paper, the hydrodynamic and thermal behavior of a Fe3O4 ferrofluid flow was experimentally investigated inside a cupric u-shaped tube on a horizontal surface, under the effect of a variable magnetic field. The inlet flow regime was laminar and considered under the thermal boundary conditions of the tube with a uniform heat flux, which was affected by the variable magnetic field in some regions. The purpose of the study was to investigate the effect of parameters such as volume fraction of nanoparticles, Reynolds number of the flow, the radius of the curvature, and magnetic field frequency at three levels and four factors in the flow behavior in order to increase the convection heat... 

    Numerical simulation of turbulent unsteady compressible pipe flow with heat transfer in the entrance region

    , Article International Conference 'Turbulent Mixing and Beyond', Trieste, 18 August 2007 through 26 August 2007 ; Volume T132 , December , 2008 ; 02811847 (ISSN) Ziaei Rad, M ; Nouri Broujerdi, A ; Sharif University of Technology
    2008
    Abstract
    In this paper, the compressible gas flow through a pipe subjected to wall heat flux in unsteady condition in the entrance region is investigated numerically. The coupled conservation equations governing turbulent compressible viscous flow in the developing region of a pipe are solved numerically under different thermal boundary conditions. The numerical procedure is a finite-volume-based finite-element method applied to unstructured grids. The convection terms are discretized by the well-defined Roe method, whereas the diffusion terms are discretized by a Galerkin finite-element formulation. The temporal terms are evaluated based on an explicit fourth-order Runge-Kutta scheme. The effect of...